УДК 621.785:535.211:669.15-194:669.017

DOI: 10.30838/J.PMHTM.2413.250918.34.396

ДРОБЛЕНИЕ НЕМЕТАЛЛИЧЕСКИХ ВКЛЮЧЕНИЙ В ПРОЦЕССЕ СКОРОСТНОГО ПЛАВЛЕНИЯ ПРИ ЛАЗЕРНОМ ВОЗДЕЙСТВИИ

ГУБЕНКО С. И. 1* , д. т. н., проф., НИКУЛЬЧЕНКО И. А. 2 , аспирант

Аннотация. *Цель*. Целью данной работы было изучение дробления неметаллических включений в процессе их скоростного плавления и кристаллизации при лазерной обработке. *Методика*. Материалами для исследований служили промышленные стали, содержащие различные неметаллические включения. Образцы различных сталей с предварительно полированной поверхностью подвергали лазерному облучению на установках ГОС—30М и КВАНТ—16. *Результаты*. Исследованы особенности контактного плавления неметаллических включений в условиях аномального массопереноса, способствующего дроблению включений в поверхностном слое упрочняемых стальных изделий. Показано, что дробление включений при лазерной обработке является фактором, определяющим уровень упрочнения сталей. *Научная новизна*. Изучение процессов скоростного плавления и затвердевания позволяет утверждать, что лазерное воздействие представляет собой способ изменения структуры и свойств неметаллических включений в поверхностных упрочненных слоях стальных изделий. *Практическая значимость*. Использование полученных результатов позволит разработать режимы лазерной обработки, позволяющие влиять на размеры, структуру, распределение и содержание включений в упрочненных слоях.

Ключевые слова: сталь; неметаллические включения; лазерное воздействие; плавление; дробление

ДРОБЛЕННЯ НЕМЕТАЛЕВИХ ВКЛЮЧЕНЬ В ПРОЦЕСІ ШВИДКІСНОГО ПЛАВЛЕННЯ ПРИ ЛАЗЕРНІЙ ДІЇ

ГУБЕНКО С. $I.^{1*}$, $\partial.$ m. H., $npo\phi.$, $HIКУЛЬЧЕНКО I. O. <math>^2$, acnipahm

Анотація. *Мета*. Метою даної роботи було вивчення дроблення неметалевих включень в процесі їх швидкісного плавлення і кристалізації при лазерній обробці. *Методика*. Матеріалами для досліджень служили промислові сталі, які містять різні неметалеві включення. Зразки різних сталей з попередньо полірованою поверхнею піддавали лазерному опроміненню на установках ГОС—30М і КВАНТ—16. *Результаты*. Досліджені особливості контактного плавлення неметалевих включень в умовах аномального масопереносу, що сприяє дробленню включень в поверхневому шарі сталевих виробів, що зміцнюють. Показано, що дроблення включень при лазерній обробці є фактором, який визначає рівень зміцнення сталей. *Наукова новизна*. Вивчення процесів швидкісного плавлення і затвердіння дозволяє стверджувати, що лазерний вплив являє собою спосіб зміни структури і властивостей неметалевих включень в поверхневих зміцнених шарах сталевих виробів. *Практична значимість*. Використання отриманих результатів дозволить розробити режими лазерної обробки, що дозволяють впливати на розміри, структуру, розподіл і вміст включень в зміцнених шарах.

Ключові слова: сталь; неметалеві включення; лазерна дія; плавлення; дроблення

SPLITTING UP OF NON-METALLIC INCLUSIONS IN THE PROCESS OF SPEED MELTING WITH LASER ACTION

GUBENKO S.I.^{1*}, *Dr. Sc. (Tech.), Prof.*, NIKULCHENKO I.O.², *Postgrad. Stud.*

^{1*} Кафедра материаловедения, Национальная металлургическая академия Украины, пр. Гагарина, 4, 49600, Днипро, Украина, тел. +38 (056) 3748 357, e-mail: sigubenko@gmail.com, ORCID ID: 0000-0001-5427-1154

² Кафедра материаловедения, Национальная металлургическая академия Украины, пр. Гагарина, 4, 49600, Днипро, Украина, тел. +38 (056) 3748 357

^{1*} Кафедра матеріалознавства, Національна металургійна академія України, пр. Гагаріна, 4, 49600, Дніпро, Україна, тел. +38 (056) 3748 357, e-mail: sigubenko@gmail.com, ORCID ID: 0000-0001-5427-1154

² Кафедра матеріалознавства, Національна металургійна академія України, пр. Гагаріна, 4, 49600, Дніпро, Україна, тел. +38 (056) 3748 357

Abstract. *Purpose*. The purpose of this work was to study the fragmentation of non-metallic inclusions in the process of their high-speed melting and crystallization during laser processing. *Methodology*. Materials for research were industrial steels containing various non-metallic inclusions. Samples of various steels with a pre-polished surface were subjected to laser irradiation at the GOS-30M and KVANT-16 installations. *Findings*. The features of contact melting of non-metallic inclusions under conditions of anomalous mass transfer, which promotes the crushing of inclusions in the surface layer of hardened steel products, were investigated. It is shown that crushing of inclusions during laser processing is a factor that determines the level of hardening of steels. *Originality*. The study of the processes of high-speed melting and solidification suggests that laser irradiation is a method of changing the structure and properties of non-metallic inclusions in surface hardened layers of steel products. *Practical value*. The using of the obtained results will allow us to develop laser processing modes that allow us to influence the size, structure, distribution and content of inclusions in the hardened layers.

Keywords: steel; non-metallic inclusions; laser action; melting; splitting

Введение

Лазерное воздействие позволяет существенно влиять на размеры, фазовый состав и структуру, а также распределение неметаллических включений в поверхностном слое стальных изделий, подвергнутых лазерному упрочнению [1-4].Поскольку лазерное излучение неоднородно по сечению, неоднородно и температурное поле в зоне облучения [5-7], поэтому на одном пятне облучения включения одного типа могут быть в разном состоянии. Как было показано в работах [1; 8], в воздействия момент лазерного тугоплавкие включения Al₂O₃, TiO, TiO₂, SiO₂, Cr₂O₃, MnO·Cr₂O₃, $FeO \cdot Cr_2O_3, \ MnO \cdot Al_2O_3, \ MgO \cdot Al_2O_3, \ FeO \cdot Al_2O_3, \ TiN$ оплавляются или остаются в твердом состоянии. Включения FeO, FeO-MnO, FeO-TiO2, имеющие более низкие температуры плавления, могут расплавиться, оплавиться иди остаться твердыми. Легкоплавкие включения FeO-SiO₂, MnO-SiO₂, 2FeOSiO₂, 2MnO·SiO₂, сульфиды, сульфидные и оксисульфидные эвтектики расплавляются и под действием ударной волны растекаются поверхности образца. Одной из важных задач, связанных с уменьшением вредного влияния включений на свойства сталей, является уменьшение их размеров, поскольку известно, что это важный показатель, определяющий уровень концентрации деформационных и термических напряжений вблизи указанных частиц [1]. Целью данной работы было изучение дробления неметаллических включений в скоростного процессе ИΧ плавления кристаллизации при лазерной обработке.

Материалы и методики исследований.

Образцы сталей R7, HБ–57, 08кп, 08X, 08T, Э3, 08Ю, IIIX15, 60Г с предварительно полированной поверхностью подвергали лазерному облучению на установках ГОС–30М и КВАНТ–16 при напряжении накачки 2,5 кВ и энергии импульса 10...30~Дж. Скорость нагрева в среднем составляла $10^5~$ 0 С/с, время воздействия импульса -1,0...6,0~ $10^{-3}~$ с, скорость охлаждения – в среднем $10^6~$ 0 С/с, плотность

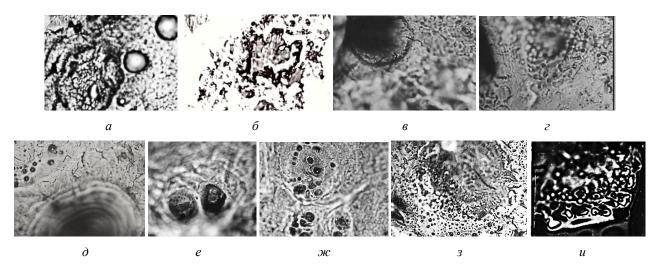
мощности излучения $-4\cdot10^4$ кВт/см 2 . Исследовали микроструктуру с помощью микроскопа «Неофот–21».

Результаты исследований и их обсуждение

Известно, что лазерный нагрев поверхностного слоя изделия вплоть до температуры плавления стали и неметаллических включений происходит с очень высокой скоростью [5; 6]. Процесс плавления зависит от параметров теплового потока, неоднородность которого обусловлена различием теплопроводности и удельной теплоемкости включений и стальной матрицы [1; 2]. Эффективность лазерного плавления неметаллических включений и стальной матрицы зависит от характера распространения фронта плавления В поверхностном Неметаллические включения оказывают локальное влияние на характер распространения плавления, способствуя его неоднородности. При этом плавление включений способствует химической и структурной неоднородности расплава, возникшего момент лазерного воздействия В тонком поверхностном слое облучаемого изделия.

При лазерном воздействии возможно плавление, так И частичное растворение неметаллических включений, причем тип включения, а также режим лазерной обработки определяют вероятность протекания этих процессов. Процессы растворения, плавления и дробления включений происходят, как правило, при их контакте с расплавленной стальной матрицей, хотя возможны и в случае твердой матрицы [1; 2].

Частичное растворение включений в момент воздействия лазерного происходит «разрушении» их поверхностного слоя в результате разупорядочения кристаллической решетки, если включение не плавится (рис. 1 a, δ). В процессе растворения включения происходят неупорядоченные переходы атомов, входящих в состав включения через границу с расплавленной (либо твердой) матрицей. Очевидно. благодаря взаимному массопереносу элементов стальной матрицы В поверхностный слой включений происходит искажение решетки включения,


^{1*} Material Science Department, National Metallurgical Academy of Ukraine, Gagarina Ave., 4, 49600, Dnipro, Ukraine, tel. +38 (056) 3748 357, e-mail: sigubenko@gmail.com, ORCID ID: 0000-0001-5427-1154

² Material Science Department, National Metallurgical Academy of Ukraine, Gagarina Ave., 4, 49600, Dnipro, Ukraine, tel. +38 (056) 3748 357

возникают напряжения и повышенная плотность дефектов кристаллического строения. Аномальный скоростной массоперенос через границы включениематрица сопровождается обменом электронами между включениями и матрицей [9]. Следует отметить, что быстротечность импульсного лазерного воздействия не создает условий для полного растворения исходных включений. Глубина зоны растворения включений зависит от режима лазерной обработки: чем больше энергия импульса W и время воздействия тимп, тем она больше. Атомы из растворенного поверхностного слоя включений проникают в окружающий расплав, что вызывает его насыщение и пересыщение элементами включения.

Плавление включения происходит путем неупорядоченных переходов его атомов через

границу с расплавленной матрицей. Механизм сверхскоростного плавления включений, как и их частичного растворения, связан с взаимным (включение \leftrightarrow матрица) скоростным массопереносом атомов через границы раздела, которые тоже плавятся. При этом аномальный скоростной массоперенос через границы включение-матрица сопровождается обменом электронами между включениями и матрицей [9], а также реализуется в условиях электромагнитного поля, индуцируемого лазерным излучением, под действием которого на компоненты сплавов возникают определенные силы, направление которых зависит от магнитных свойств этих компонентов [1; 2].

Puc. 1. Растворение, плавление и дробление неметаллических включений при лазерном воздействии; ×500×6 / Fig. 1. Dissolution, melting and crushing of non-metallic inclusions by laser exposure; ×500×6

Рассмотрим процесс плавления включений, особенности которого определяют условия их дробления при лазерном воздействии. Скоростное плавление включений связано с рядом процессов, условия разрушения определяющих кристаллической решетки (рис. 1 в, г). Во-первых, благодаря взаимному массопереносу элементов стальной матрицы в поверхностный слой включений искажается решетка включения, возникают напряжения и повышенная плотность дефектов кристаллического строения, что важно рассмотрения теории дислокационного плавления применительно к включениям [10]. Согласно этой теории, сильно искаженные области с практически разупорядоченной решеткой могут быть зародышами жидкой фазы, которые целиком переходят в жидкую сталь, растворяясь в ней и насыщая прилегающие к включению участки матрицы элементами включения. При ЭТОМ В расплаве вокруг исходного «материнского» включения появляется большое количество гетерофазных кластеров, состав и структура которых близки к таковым у включений. Очевидно, реализация такого механизма плавления включений определяется величиной напряжений,

создаваемых в их поверхностном слое. По-видимому, высокоскоростного условиях лазерного воздействия возникновении больших при напряжений практически возможно безактивационное превращение сильно разупорядоченного поверхностного слоя включения состояние благодаря образованию зародышей жидкой фазы, которые превращаются в кластеры, входящие в структуру неравновесного расплава.

Во-вторых, следует рассмотреть роль межфазных границ включение — матрица в процессе плавления включений в условиях ЛТО. Как было показано в работах [1; 2] под действием лазерного излучения исходная структура границ включение-матрица переходит в неравновесное высокоэнергетическое состояние, что вызывает развитие диссипативных процессов, связанных со стремлением системы включение-матрица к состоянию с минимумом свободной энергии. В результате система включениематрица переходит к состоянию неустойчивого равновесия, которое определяет структуру и свойства лазерно-закаленной межфазной границы. В условиях скоротечного импульсного лазерного воздействия

релаксационные процессы на границах включение – матрица практически не имеют времени для развития, поэтому напряжения на этих границах способствуют преимущественному развитию плавления включений вдоль границ включение – матрица и переходу отдельных зерен включения или их комплексов в окружающий расплав, в котором они затем плавятся как самостоятельные микровключения. Эти новообразования образуют кластеры в структуре расплава, которые по составу и структуре близки к включениям.

Как показано в работе [1], на скорость лазерного растворения и плавления должна влиять анизотропия поверхностных свойств включения. Вероятность массопереноса от включения в матрицу через границу их раздела тем больше, чем меньше разрывается межатомных связей, т. е. чем менее плотно упакована атомная плоскость. Включения с ярко выраженной анизотропией поверхностных свойств должны характеризоваться более высокой скоростью растворения. Процесс плавления включения сопровождается скоростным перераспределением сил межатомных связей в пользу атомов разного типа, имеющих благоприятное соотношение электроотрицательностей [11; 12].

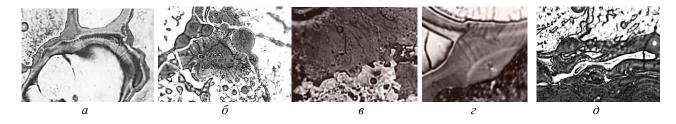
В результате плавления стальной матрицы и включений образуется локальная микрометаллургическая ванна, в которой под действием лазерного излучения возникают гидродинамические потоки в условиях вихревого термокапиллярного перемешивания, что вызывает перемещение включений (рис. 1, д-ж). При лазерном плавлении возникают высокая включений степень неравновесности жидкой фазы, бифуркационная неустойчивость расплава и переход от ламинарного жидкости К турбулентному, обеспечивает градиент колебательного давления на включение-матрица (жидкой, расплавились и включение, и матрица, полужидкой, если матрица осталась твердой), контролирующий конвективные и аномальные потоки массопереноса [1; 12]. Это вносит элементы конвективного массопереноса элементов включения и матрицы в общий процесс аномального скоростного массопереноса [1; 12]. Оба механизма плавления и растворения включений, рассмотренные выше, свидетельствуют об образовании поверхностном слое изделия, подвергнутом воздействию, локальных участков микрогетерогенного расплава, в структуре которого присутствуют кластеры или гетерофазные комплексы, сохраняющих сильное химическое взаимодействие атомов, входивших состав исходных включений. Формируются локальные металлических эмульсионных участки типа расплавов, в которых при резком охлаждении гетерофазные кластеры кристаллизуются Таким «сателлитные» образом, частицы. ЭТИ динамические кластеры являются центрами скоростной кристаллизации включений

непосредственно в момент плавления исходных включений, так и при последующем охлаждении (рис. 1 3).

Процессы скоростных формирования «сателлитных» частиц и их роста сопровождаются аномальным массопереносом атомов расплавленной стальной матрицы через границу их раздела к новым частицам. При этом, как и при плавлении включений [1-4], важную роль играет соотношение электроотрицательностей атомов различного типа [2; 11; 12], поскольку большая электроотрицательностей компонентов разница вызывает усиление связей между разнородными атомами и позволяет объяснить преимущественный массоперенос атомов определенных компонентов из матрицы к растущим «сателлитным» частицам. Кроме того, следует учитывать, что формирование и рост «сателлитных» частиц, как ранее было определено для процесса лазерного плавления включений [1-4], происходит в условиях, когда осуществляется обмен электронами между расплавом и новыми частичками [9], а также действия электромагнитного поля, индуцируемого излучением. Под лазерным влиянием электромагнитного поля на компоненты сплавов возникают определенные силы, направление которых зависит от магнитных свойств этих компонентов, способствуют аномальному которые пределению атомов элементов, обладающих разными магнитными свойствами (магнитным моментом) из расплавленной стальной матрицы к растущим «сателлитным» частицам. Таким образом, в процессе частиц электронное роста «сателлитных» взаимодействие между ними и расплавленной матрицей усложняется электромагнитным взаимодействием между атомами этих фаз.

Следует учитывать еще один возможный дробления включений в условиях импульсного лазерного воздействия. Указанная обработка происходит при значительной энергии импульса, высокой удельной мощности излучения, кратковременности воздействия, больших скоростях нагрева и охлаждения, приводящие к протеканию плавления включений с очень высокой скоростью. имеющейся литературе пока не произведены количественные расчеты теплового, концентрационного и упругого полей, которые позволили бы выяснить, каково распределение концентрации температуры, компонентов, напряжений деформаций, обусловленные спецификой воздействия луча лазера. В силу неоднородности излучения по сечению температурное поле в зоне облучения неоднородно. Кроме того, следует учитывать влияние включений на распределение температуры, поскольку они имеют большую поглощательную способность, чем матрица стали, а также различную теплопроводность включений матрицы, усугубляет температурную микронеоднородность. Как было показано в работах [1; 5; 6] воздействие луча импульсного лазера подобно взрыву. В ударных волнах развиваются огромные давления, приводящие возникновению значительных напряжений, которые способствуют реализации аномального массопереноса, который обсуждался выше. Кроме того, при давлении ударного сжатия эти напряжения превысить величину временного сопротивления твердого включения, разогретого до высоких температур. В результате происходит разрушение твердых тугоплавких включений по вязкому либо хрупкому механизму в зависимости от природы включения и невозможности скоростной релаксации в нем напряжений в условиях импульсного кратковременного лазерного воздействия. Очевидно, при таком разрушении включений происходит разрыв межатомных связей вдоль плоскостей спайности их кристаллической решетки и осколки разрушенных включений перемещаются в расплавленной стальной матрице как самостоятельные включения и могут плавиться. Включения с ярко выраженной анизотропией поверхностных свойств должны иметь более высокую способность к разрушению.

Что касается легкоплавких включений, переходящих в жидкое состояние при любом режиме лазерного воздействия, то значительные напряжения, развивающиеся в ударных волнах при импульсном лазерном воздействии, способны разрушать их путем разделения на отдельные капли. Разрушение жидких включений происходит путем разрыва межатомных связей. Эти капли становятся кратковременными


элементами структуры расплава и перемещаются в нем под действием гидродинамических потоков в термокапиллярного вихревого условиях перемешивания. Поведение новых капель металлическом расплаве определяется соотношением их вязкостей, а также поверхностным натяжением и характером смачивания капель бывших включений расплавом. Капли, образовавшиеся при разрушении жидких включений, находятся в условиях, когда осуществляется обмен электронами между ними и расплавом [9], а также действия электромагнитного поля, индуцируемого лазерным излучением, которое оказывает влияние на аномальное перераспределение атомов элементов. обладающих разными магнитными свойствами (магнитным моментом). В процессе скоростного охлаждении после лазерного воздействия эти капли затвердевают как новые неметаллические включения. В результате вместо включений возникают исходных участки дисперсными частицами (рис. 1 и).

В результате наложения нескольких процессов – плавления (или частичного растворения) исходных включений и образования новых «сателлитных» частиц, а также механического дробления твердых либо жидких включений в условиях лазерного воздействия существенно уменьшается средний размер неметаллических включений, а также уровень загрязненности сталей в поверхностном слое изделий (табл. 1). С помощью лазерной обработки удалось уменьшить средние размеры включений и загрязненность ими стали на 30...50 %.

Таблица 1

Влияние лазерного воздействия на объемную долю включений f и средний размер включений $D_{\rm B}$ в колесной стали (энергия импульса 25 Дж, время воздействия 3,6 \times 10⁻³, c) / The influence of laser irradiation on the volume fraction of inclusions f and the average size of inclusions $D_{\rm B}$ in wheel steel (pulse energy 25 J, exposure time 3,6 \times 10⁻³, sec)

Включение	f, об % (до ЛТО)	D _в , мкм (до ЛТО)
FeO – MnO	0,17 (0,28)	13,2 (20,0)
$MnO \cdot Al_2O_3$	0,15 (0,25)	15,5 (25,0)
FeS – MnS	0,20 (0,36)	9,4 (16,2)
$MnO \cdot SiO_2$	0,17 (0,29)	23,5 (36,1)

Puc. 2. Зоны скоростной кристаллизации в неметаллических включениях в колесной стали; × 500 / Fig. 2. Zones of high-speed crystallization in non-metallic inclusions in wheel steel; × 500

При закалке из жидкого состояния во включениях возникла зона скоростной кристаллизации, для которой характерны зоны ликвации, ультрамелкозернистость, столбчатая форма зерен, зоны

локальных микросдвигов, частички метастабильных фаз (рис. 2).

Выводы

Изучение процессов скоростного плавления и затвердевания позволяет утверждать, что лазерное воздействие представляет собой способ изменения структуры и свойств неметаллических включений в поверхностных упрочненных слоях стальных изделий. Исследованы особенности контактного

плавления неметаллических включений в условиях аномального массопереноса, способствующего дроблению включений в поверхностном слое упрочняемых стальных изделий. Показано, что дробление включений при лазерной обработке является фактором, определяющим уровень упрочнения сталей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Неметаллические включения в стали : монография / [С. И. Губенко, С. П. Ошкадеров]. Киев : Наукова думка, 2016. 528 с.
- 2. Губенко С. И. Плавление и кристаллизация неметаллических включений и стальной матрицы при лазерной обработке / С. И. Губенко // Фізико-хімічна механіка матеріалів. 2010. Вип. 46. № 3. С. 73—79.
- 3. Губенко С. І. Особливості швидкісного плавлення та твердіння неметалевих включень при лазерній обробці сталі / С. І. Губенко, В. М. Беспалько, І. А. Нікульченко // Металознавство та обробка металів. 2017. № 2 (87). С. 54—59.
- 4. Губенко С. И. Скоростные плавление и кристаллизация неметаллических включений в сталях при лазерном воздействии : зб. праць XIV Всеукраїнської науково-практичної конференції «Спеціальна металургія: вчора, сьогодні, завтра» / Губенко С. И., Никульченко И. А. Київ : НТУУ «КПІ», 2016. С. 297—306.
- 5. Структура и свойства сплавов обработанных излучением лазера : монография / [М. А. Криштал, А. А. Жуков, А. Н. Кокора]. Москва : Металлургия, 1973. 192 с.
- 6. Лазерная поверхностная обработка металлов и сплавов : монография / [Π . А. Леонтьев, Н. Т. Чеканов, М. Γ . Хан]. Москва : Металлургия, 1986. 142 с.
- 7. Денисенко О. І. Розподіл температури одновимірного зразка в умовах місцевої термообробки / О. І. Денисенко, В. І. Цоцко, І. М. Спиридонова, Б. Г. Пелешенко // Фізика і хімія твердого тіла. Т. 9. № 1 (2008). С. 181–184.
- 8. Губенко С. И. Возможности трансформации неметаллических включений и межфазных границ включение матрица при высокоэнергетических обработках / С. И. Губенко // Металлофизика, новейшие технологи. 2014. Т. 36. № 3. С. 287—315.
- 9. Электронная локализация в твердом теле : монография [Самсонов Γ . В., Прядко И. Ф., Прядко Л. Ф.]. Москва : Наука, 1976. 339 с.
- 10. Капиллярные явления в процессах роста и плавления кристаллов : монография [Найдич Ю. В., Перевертайло В. М., Григоренко Н. Ф.]. Киев : Наукова думка, 1983. 100 с.
- 11. Равдель А. А. Приложение теории активированного комплекса к реакциям растворения / А. А. Раздель // Адгезия расплавов и пайка материалов. 1979. № 4. С. 47—51.
- 12. Губенко С. И. Лазерное плавление и кристаллизация неметаллических включений и стальной матрицы / С. И. Губенко // Высокоэнергетическая обработка материалов. Днепропетровск : APT-ПРЕСС, 2009. С. 38–50.

REFERENCES

- 1.Gubenko S.I. and Oshkadepov S.P. *Nemetallicheskie vkluchenija v stali* [Non-metallic inclusions in steel]. Kyiv: Naukova dumka, 2016, 528 p. (in Russian).
- 2. Gubenko S.I. *Plavlenie I kristallizatsia nemetallicheskih vklucheniji I stalnoy matritsi pri lazernoy obrabotke* [Melting and crystallization of non-metallic inclusions and the steel matrix during laser processing]. *Fiziko-himichna mehanika materialiv* [Physical and chemical mechanics of materials]. 2010, vol. 46, no. 3, pp. 73–79 (in Russian).
- 3. Gubenko S.I., Bespalko V.N. and Nikulchenko I.A. *Osoblivosti shvidkisnogo plavlennya ta tverdinnya nemetalevih vklucheniy pri lazerniy obrobtsi stali* [Features of high-speed melting and hardening of non-metallic inclusions during laser machining of steel]. *Metaloznavstvo ta obrobka metaliv* [Metal Science and Treatment of Metals]. 2017, vol. 87, no. 2, pp. 54–59 (in Ukrainian).
- 4. Gubenko S.I. and Nikulchenko I.A. *Skorostnie plavlenie I kristallizatsiya nemetalevih vklucheniy pri lazernom vozdeystvii* [High-speed melting and crystallization of non-metallic inclusions in steels under laser irradiation]. Collect of Works of the XIV All-Ukrainian Scientific and Practical Conference "Special Metallurgy: Yesterday, Today, Tomorrow", Kyiv, NTUU "KPI", 2016, pp. 297–306 (in Russian).
- 5. Kryshtal M.A., Zhukov A.A. and Kokora A.H. *Struktuta I svojstva cplavov obrabotannih izlucheniem lasera* [Structure and properties of alloys treating with laser beam]. Moscow: Metallurgy Publ., 1973, 192 p. (in Russian).
- 6. Leontjev P.A., Chekanov N.T. and Han M.G. *Lazernaja poverhnostnaja obrabotka metallov i splavov* [Laser surface treatment of metals and alloys]. Moscow: Metallurgy Publ., 1986, 142 p. (in Russian).
- 7. Denisenko A.I., Tsotsko V.I., Spiridonova I.M. and Peleshenko B.G. *Rozpodil tempetaruti odnovimirnogo zrazka v umovah mistsevoi termoobrobki* [Temperature distribution of the one-dimensional sample in terms of local heat treatment]. *Fizika i himija tverdogo tila* [Physics and Chemistry of Solid State]. 2008, vol. 9, no. 1, pp. 181–184 (in Ukrainian).
- 8. Gubenko S.I. *Vozmozhnosti transformatsii nemetallicheskih vkluchenij I mizhphasnih granits vcluchenie-matritsa pri visokoenegheticheskih obrabotkah* [Possibilities of transformation of non-metallic inclusions and interphase inclusion-matrix boundaries under high-energy treatments]. *Metalliphizika, noveishie tehnologii* [Metal Physics, New Technologies]. 2014, vol. 36, no. 3, pp. 287–315 (in Russian).
- 9. Samsonov G.V., Priadko I.F. and Priadko L.F. *Elektronnaya lokalizatsiya v tverdom tele* [Electronic localization in solids]. Moscow: Science Publ., 1976, 339 p. (in Russian).

МЕТАЛОЗНАВСТВО ТА ТЕРМІЧНА ОБРОБКА МЕТАЛІВ № 3 2018 р. ISSN 2413-7405

- 10. Naidich Yu.V., Perevertailo V.M. and Grigorenko N.F. *Kapilyarnie yavleniya v protsesah rosta I plavleniya kristallov* [Capillary phenomena in the growth and melting of crystals]. Kyiv: Naukova dumka, 1983, 100 p. (in Russian).
- 11. Ravdel A.A. *Prilozhenie teorii aktivirovannogo kompleksa k realizatsii rastvoreniya* [Application of the theory of an activated complex to dissolution reactions]. *Adgeziya rasplavov i pajka materialov* [Adhesion of melts and soldering of materials]. 1979, no. 4, pp. 47–51 (in Russian).
- 12. Gubenko S.I. *Lazernoe plavlenie I kristallizatsiya nemetallicheskih vklucheniy I stalnoy matritsi* [Laser melting and crystallization of non-metallic inclusions and steel matrix]. *Vysoko`energeticheskaya obrabotka materialov* [High-energy processing of materials]. Dnipropetrovsk: ART-PRESS, 2009, pp. 38–50. (in Russian).

Статья рекомендована к публикации д-ром техн. наук, проф. Куцовой В. З. (Украина), д-ром техн. наук, проф. Большаковым В. И. (Украина).

Поступила в редакцию 05.08.2018. Принята к печати 29.08.2018.