УДК 669.15-192.017:621.357.7

ВЛИЯНИЕ МЕДИ НА ПРЕИМУЩЕСТВЕННУЮ ОРИЕНТИРОВКУ КРИСТАЛЛОВ В ЭЛЕКТРООСАЖДЕННОМ ЖЕЛЕЗЕ

Е. В. Колесник, к. т. н., доц.

ГВУЗ "Украинский государственный химико-технологический университет"

Актуальность и состояние вопроса. Одним из возможных путей повышения комплекса свойств электроосажденных покрытий является создание в них определенной кристаллографической текстуры — преимущественной ориентировки кристаллов [1–2]. Одним из факторов, влияющих на формирование преимущественных ориентировок в электроосажденных покрытиях, является присутствие в электролите ионов других металлов соосаждаемых с основным металлом покрытия. В предыдущих работах показано, что введение в электролит железнения ионов хрома [3], никеля [4], марганца [5] приводит к изменениям в ориентировке кристаллов получаемых покрытий и, подбирая определенные соотношения концентраций ионов металлов в электролите, можно добиться существенного повышения микротвердости покрытий на основе железа [6], что актуально в связи с их применением в качестве износостойких покрытий стальных деталей.

Так, введение малых концентраций ионов хрома (1 г/л) в сульфатный электролит приводит [3] к формированию ярко выраженной аксиальной ориентировки кристаллов <111>, преобладающей над ориентировкой <211>, характерной для чистого электроосажденного железа [7]. Аналогичное явление, но в более широком диапазоне концентраций (1–10 г/л), наблюдается при введении в электролит ионов никеля, причем доля и совершенство аксиальной текстуры <111> возрастают с повышением концентрации никеля в сульфатном электролите [4]. Введение ионов марганца мало влияет на преимущественную ориентировку кристаллов в электроосажденном железе. Зафиксировано лишь крайне незначительное увеличение доли ориентировки <110> при осаждении покрытий из электролита с малой концентрацией марганца (1 г/л) [5]. Одновременное введение в электролит железнения ионов хрома, никеля, марганца в равных долях при суммарной концентрации 40 г/л [6] приводит к преобладанию ориентировки кристаллов <111> в текстуре покрытий.

Для расширения существующих представлений о закономерностях текстурообразования в покрытиях на основе железа также представляется актуальным исследование влияния и других легирующих элементов, которые хотя и не могут быть использованы для получения практически применимых покрытий металлоизделий, тем не менее, могут соосаждаться с железом из водных электролитов. В частности, одним из металлов, влияние которого на текстурообразование электроосажденного железа до сих пор не рассматривалось, является медь. Учитывая существенную разницу стандартных электродных потенциалов меди и железа $(0.337\ \text{и} - 0.440\ \text{В}$ для Cu^{2+}/Cu и Fe^{2+}/Fe соответственно), очевидно, что ионы меди могут вводиться в электролит только в значительно меньших концентрациях по сравнению с концентрацией железа во избежание преимущественного осаждения меди.

Таким образом, целью данной работы стало выявление возможных изменений преимущественной ориентировки кристаллов электроосажденного железа, получаемого из сульфатного электролита железнения, содержащего ионы меди.

Методика исследования. Покрытия толщиной 15 мкм электроосаждали из сульфатного электролита (pH 2–3) с концентрацией ионов железа (II) – $80 \, \text{г/л}$, меди (II) – 1– $10 \, \text{г/л}$ при температуре 55– $57 \, ^{\circ}\text{C}$ и катодной плотности тока $10 \, \text{А/дм}^2$ на подложку из стали $08 \, \text{кn}$. При осаждении использовали железный анод.

Наличие преимущественных ориентировок кристаллов определяли дифрактометрическим методом на модернизированном рентгеновском дифрактометре ДРОН-3 в излучении меди. Структуру поверхности покрытий исследовали методом растровой электронной микроскопии на микроскопе РЭМ-106И в режиме вторичных электронов при ускоряющем напряжении 20 кВ.

Результаты исследования. Рентгеновский анализ образцов электроосажденных покрытий, полученных из электролита с концентрацией ионов меди 1 г/л, показал наличие ярко выраженной аксиальной ориентировки кристаллов <110>, о чем свидетельствует резкое увеличение относительной интенсивности соответствующего дифракционного максимума по сравнению с образцами электроосажденного железа без легирования, где преобладает аксиальная ориентировка <211> (рис. 1).

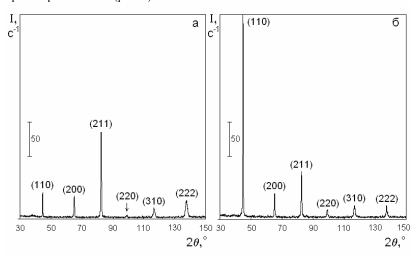


Рис. 1. Дифрактограммы электроосажденного железа (а) и электроосажденного сплава Fe–Cu (концентрация меди в электролите 1 г/л) (б)

Формирование аксиальной ориентировки кристаллов <110>, обусловленной наличием ионов меди в электролите, можно объяснить следующим образом.

Характер и скорость нуклеации при электроосаждении покрытий в значительной мере определяется перенапряжением катода, то есть величиной отклонения потенциала катода при электрокристаллизации от его стандартного значения. В зависимости от условий электролиза перенапряжение может изменяться в широком интервале от 10^{-3} до 2 В [1]. Для металлов с ОЦК решеткой известна [1] последовательность изменения преимущественной ориентировки кристаллов в покрытиях с ростом перенапряжения катода: <110>, <211>, <310>, <111>. Известно также, что железо, относится к группе металлов, для которых характерно сравнительно высокое перенапряжение катода при электроосаждении (более 0,1 В), в то время как медь – к группе металов с меньшим перенапряжением (десятки мВ) [1].

Таким образом, при введении меди в электролит железнения, очевидно, происходит снижение перенапряжения катода и характерная для получаемого при данных условиях электролиза электроосажденного железа (без легирования) ориентировка кристаллов <211> изменяется на предыдущую ориентировку последовательности <110>, которая формируется обычно в ОЦКметаллах при низких перенапряжениях катода. То есть, причиной формирования ориентировки кристаллов <110> является снижение перенапряжения катода при введении ионов меди в электролит.

Кардинальное изменение преимущественной ориентировки кристаллов сопровождается также изменениями в морфологии поверхности покрытий, осаждаемых из электролита, содержащего ионы меди (рис. 2).

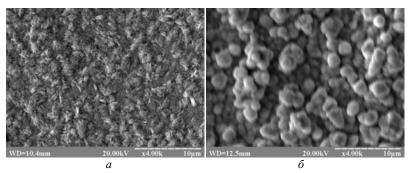


Рис. 2. Структура поверхности (× 4 000) электроосажденного железа (a) и электроосажденного сплава Fe–Cu (концентрация меди в электролите 1 г/л) (δ)

В микроструктуре таких покрытий преобладают гораздо более крупные (1,5–3 мкм) кристаллы, форма которых приближается к равноосной (рис. 2 б), в то время как микроструктура электроосажденного железа без легирования представлена мелкими (менее 1 мкм) неравноосными кристаллами, образующими более гладкий рельеф поверхности (рис. 2 а).

Формирование более крупных кристаллов в электролите, содержащем ионы меди, подтверждает предположение о снижении перенапряжения като-

да, так как известно [1], что снижение перенапряжения приводит к снижению скорости образования зародышей и, как следствие — к увеличению размеров кристаллов.

Увеличение концентрации ионов меди в электролите до 5–10 г/л приводит к преимущественному осаждению меди, не образующей при данных условиях электролиза компактных осадков.

В дальнейшем может представлять интерес исследование влияния меди на преимущественную ориентировку кристаллов в железных покрытиях, электроосаждаемых из хлоридного электролита, поскольку текстура чистого железа, осаждаемого из этого электролита [8], несколько отличается от текстуры железа, получаемого из сульфатного.

ВЫВОДЫ

Введение малых концентраций (1 г/л) ионов меди в электролит железнения приводит к изменению преимущественной ориентировки кристаллов – в покрытиях наблюдается ярко выраженная аксиальная ориентировка кристаллов <110>, сменяющая ориентировку <211>, характерную для электроосажденного железа без легирования. Возможной причиной формирования преимущественной ориентировки <110> является снижение перенапряжения катода при введении ионов меди в электролит. Образование аксиальной текстуры <110> сопровождается формированием крупных равноосных кристаллов в структуре покрытий.

Литература

- 1. Ковенский И. М. Металловедение покрытий / И. М. Ковенский, В. В. Поветкин. М.: Интермет инжиниринг, 1999. 296 с.
- 2. Czerwinski F. Texture in metallic and ceramic films and coatings / Czerwinski F., Szpunar J. A. // Textures and Microstructures. 1999. № 1–4. P. 107–118.
- 3. Колесник Е. В. Особенности формирования структуры электроосажденных Fe—Cr покрытий / Е. В. Колесник, М. Т. Величко // Металознавство та термічна обробка металів. Д. : ДВНЗ «ПДАБА», 2013. № 4. С. 64–68.
- 4. Колесник Е. В. Особенности структурообразования электроосажденных сплавов Fe–Ni / Е. В. Колесник // Науковий вісник Національного гірничого університету. Д., 2013. № 5. С. 62–66.
- 5. Колесник Е. В. Структура электроосажденного железа, легированного марганцем / Е. В. Колесник, И. Д. Захаров // Металознавство та термічна обробка металів. Д. : ДВНЗ «ПДАБА», 2013. № 1. С. 69–72.
- 6. Колесник Е. В. Микротвердость и износостойкость электроосажденных сплавов на основе железа / Е. В. Колесник // Металознавство та термічна обробка металів. Д. : ДВНЗ «ПДАБА», 2012. № 1. С. 58–63.
- 7. Колесник Е. В. Изменение совершенства кристаллографической текстуры по толщине электроосажденных железных покрытий / Е. В. Колесник // Металлофизика и новейшие технологии. 2011. С. 401—406.

8. Колесник Е. В. Влияние легирования цинком на текстуру электроосажденного железа / Е. В. Колесник // Металознавство та термічна обробка металів. – Д. : ПДАБА, 2010. – № 4. – С. 23–27.

УДК 669.15-192.017:621.357.7

Влияние меди на преимущественную ориентировку кристаллов в электроосажденном железе / Е. В. Колесник // Металознавство та термічна обробка металів: науков. та інформ. журнал / Д. : ДВНЗ ПДАБА, 2014. – \mathbb{N}_2 3. – С. – . – Рис. 2. – Бібліогр.: (8 назв.)

Методом рентгеновской дифрактометрии установлено, что введение малых концентраций ионов меди в электролит железнения приводит к изменению преимущественной ориентировки кристаллов в покрытиях – ярко выраженная аксиальная ориентировка <110> сменяет ориентировку <211>, характерную для электроосажденного железа без легирования.

Методом рентгенівської дифрактометрії установлено, що введення малих концентрацій ионів міді в електроліт залізнення приводить до зміни переважного орієнтування кристалів в покриттях – яскраво виражене аксіальне орієнтування <110> змінює орієнтування <211>, характерне для електроосадженого заліза без легування.

By the method of X-Ray diffractometry it was established, that insertion of low concentrations of copper ions into iron-plating electrolyte causes change of the preferred crystal orientation in the coatings – pronounced axial orientation of <110> replaces the orientation of <211> typical for electrodeposited iron without alloying.