By the definition of the metric object identification
Keywords:
state space object identification, mathematical space, fractal dimension, microstructureAbstract
Formulation of the problem. As the studies found in basic and applied sciences, they can be interpreted as a search space metric state identification object (SSOI). In carrying out this research, increasing the complexity of its perception. This leads to the appearance of problems of identification, for which the existing methods, for example mathematical programming, are unsuitable, since they use mathematical causes serious difficulties. To overcome these difficulties, usually injected a single metric, which is completely arbitrary choice, which often leads to serious losses in the accuracy of identification, as "... some forces in nature follow one other of its special geometry" [1]. Results and discussion. Nonconservation SSOI measures, leads to the definition of its nonergodicity. The latter initiates the modification of "mathematical space", ie the construction of new, abstract schemes. Out of this situation, some researchers have found in the application of fractal geometry to identify the language. For greater reliability of the results may be that the sensitivity of the fractal dimension is determined in several randomly selected points SSOI. If the difference is obtained at these points exceeds the error indications, with which it is determined, the identifiable structure - fractal. Determine the sensitivity of micro-hardness of ferrite grains St3ps steel (0,16 % C) to their fractal dimension. Despite the fact that the steel structure of the entire cross section of the section of ferrite-pearlite properties, calculated in the three fiducial points, differ from each other, as evidenced by the change of the fractal dimension of its components. Sensitivity values 1,333...2,500 an order of magnitude higher than the values of error in determining the fractal dimension 0,1...0,3, which indicates the possibility of applying fractal theory to register qualitative transformation of the metal. Conclusions. This example confirms the fact that the structure is a steel St3ps fractal under consideration and may increase when reaching the threshold of sensitivity serve as an indicator of quality characteristics of the metal.
References
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Лобачевский Н. И. Полное собрание сочинений / Н. И. Лобачевский. – Москва - Ленинград : Гостехиздат, 1949. - Т. 11. - С. 158-159. – Режим доступа: https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B1%D0%B0%D1%87%D0%B5% D0%B2%D1%81%D0%BA%D0%B8%D0%B9,_%D0%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0%D0%B9_%D0%98%D0%B2%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87
Большаков Вад. І. Про неповноту формальної аксіоматики в задачах ідентифікації структури металу / Вад. І. Большаков, В. І. Большаков, Ю. І. Дубров // Вісник НАН України. - 2014. - № 4. – С. 55–59. – Режим доступу: http://dspace.nbuv.gov.ua/handle/123456789/69367
Працьовитий М. В. Фрактальний підхід у дослідженнях сингулярних розподілів / М. В. Працьовитий – Київ : Національний педагогічний університет ім. М. П. Драгоманова, 1998. – 295 с. – Режим доступу: http://library.kpi.ua:8991/F?func=find-b&request=000125951&find_code=SYS
Большаков В. И. Об оценке применимости языка фрактальной геометрии для описания качественных трансформаций материалов / В. И. Большаков, Ю. И. Дубров // Доповіді НАН України. - № 4. - 2002. - С. 116-121. – Режим доступа: http://www.dopovidi.nas.gov.ua
Биллингслей П. Эргодическая теория и информация / П. Биллингслей. - Москва : Мир, 1969. - 238 с. – Режим доступа: http://library.univer.kharkov.ua/OpacUnicode/index.php?url=/notices/index/IdNotice:58905/Source:default
Ланге О. Целое и развитие в свете кибернетики / О. Ланге // Исследование по общей теории систем. - Москва : Прогресс, 1969. - С. 181-252. – Режим доступа: http://dic.academic.ru/dic.nsf/ruwiki/1636898
F. Takens. Detecting strange attractors in turbulence / Takens F. // In D.A. Rand and L.-S. Young. Dynamical Systems and Turbulence, Lecture Notes in Mathematics. – Springer-Verlag. – Vol. 898. – 1981. – Рp. 366–381. – Режим доступа: https://en.wikipedia.or
/wiki/Takens%27_theorem
Большаков В. И. Особенности применения мультифрактального формализма в материаловедении / В. И. Большаков, В. Н. Волчук, Ю. И. Дубров // Доповіді НАН України. - 2008. - № 11. - С. 99-107. – Режим доступа: http://www.dopovidi.nas.gov.ua/2008-11/08-11-17.pdf
Mandelbrot B.B. The Fractal Geometry of Nature / B.B. Mandelbrot. – New-York, San Francisco : Freeman, 1982. – 480 p. – Режим доступa: http://www.amazon.com/Fractal-Geometry-Nature-Benoit-Mandelbrot/dp/0716711869
Федер Е. Фракталы / Е. Федер. – Москва : Мир, 1991. - 254 с. – Режим доступа: http://inis.jinr.ru/sl/vol2/Physics/Динамические%20системы%20и%20Хаос/ Федер%20Е.,%20Фракталы,%201991.pdf
Hausdorff G. Dimension und auberes Mab. / G. Hausdorff. // Math. Ann. - 1919. - Vol. 79. - Рр. 157-179. – Режим доступа: http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002266989
Downloads
Published
Issue
Section
License
Authors that are published in this journal agree to follow the conditions:
Authors reserve the right to the authorship of his work and cede the right to the journal of first publication of this work on conditions of the license under the Creative Commons Attribution License, which allows others to distribute it freely with the obligatory reference to the author of the original work and the first publication of the work in this journal.