To the problem of estimation of the influence of icing on the aircraft

Authors

DOI:

https://doi.org/10.30838/J.PMHTM.2413.250918.10.393

Keywords:

flight safety, icing intensity aircrafts icing, numerical simulation, Reynolds-averaged Navier-Stokes equations

Abstract

Adstract. Statement of the  problem. The question of the qualitative and quantitative determination of the degree of negative influence of icing on the aircraft during the flight in adverse meteorological conditions, which has a specific layout, configuration and  size,  is  quite  complex  and  still  remains  far  from  completion.  To  solve  this  problem,  an  integrated  approach  based  on  the developed methodology and software support, which allows numerical simulation of the icing processes of the aerodynamic surfaces of aircraft has been proposed. When describing the airborne flow, an approach based on solving Reynolds-averaged Navier−Stokes equations using the Spalart−Allmaras turbulence model, in which  the motion  of supercooled water droplets is described using an interpenetrating  media  model,  was  proposed.  Numerical  simulation  of  the  icing  process  on  a  streamlined  surface  was  performed using  the  method  of  surface  control  volumes,  based  on  the  equations  of  continuity,  conservation  of  momentum  and  energy. Calculation results. Systematic multiparameter studies of icing processes in a wide range of parameters using asan example of the NACA  0012  profile  were  carried  out. Conclusions. The  possibility  of  applying  the  obtained  results  in  ensuring  flight  safety, designing deicing/antiicing protection systems, according to the regulatory documentation rules, was illustrated. Systematization of the results that can be obtained for a given aircraft, including one equipped with an ice protection system,  will allow objectively, quickly  and  accurately  analyze  the  danger  of  icing  along  the  planned  route  during  all  phases  of  flight in  known  meteorological conditions, as well as during flight, using current data on the state of the atmosphere, to develop recommendations for changing the flight plan.

Author Biographies

S. V. Alekseenko, Department of Mechanotronics, Oles Honchar Dnipro National University, Dnipro, Gagarina Ave., 72, 49000, Ukraine

Cand. Sc. (Tech.), Ass. Prof.,

O. P. Yushkevich, Department of Mechanotronics, Oles Honchar Dnipro National University, Dnipro, Gagarina Ave., 72, 49000, Ukraine

Cand. Sc. (Tech.), Ass. Prof.,

References

Jeck R.K. A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions.Technical report, DOT/FAA/AR-01/91,November,2001,43 p.

Aeronautical Information Manual (AIM), updated annually; Federal Aviation Administration, Washington, DC 20590.

Federal Aviation Regulations, in “Code of Federal Regulations, Title 14, Aeronautics and Space” updated periodically; Federal Aviation Administration, Washington, DC 20590.

Alekseyenko S.V. and Prikhod’ko A.A. Mathematical Modeling of Ice Body Formation on the Wing Airfoil Surface :monograph.Fluid Dynamics,2014, vol. 49, no.6, pp. 715–732.

Prikhod’ko A.A. and Alekseyenko S.V. Numerical Simulation of the Processes of Icing on Airfoils with Formation of a “Barrier” Ice. Journal of Engineering Physics and Thermophysics, vol. 87, iss. 3, 2014, pp. 598–607. DOI:10.1007/s10891-014-1050-0.

Alekseyenko S.V. and Prykhod’ko O.A. Numerical simulation of icing of a cylinder and an airfoil: model review and computational results.TsAGI Science Journal, vol. 44, iss. 6,2013, pp. 761–805.

Lewis W. Meteorological Aspects of Aircraft Icing.Compendium of Meteorology. American Meteorological Society, Boston, Massachusetts,1951, pp. 1197–1203.

Thompson J.K. All-Weather Flight Concern of the Pilot and Weather Forecaster : monograph. Aeronautical Engineering Review,July,1956,66 p.

Mitchell L.V. Aircraft Icing-A New Look.Aerospace Safety. Published by the U. S. Air Force,Dec.,1964, pp. 9–11.

Werner J.B. Ice Protection Investigation for Advanced Rotary-Wing Aircraft. USAAMRDL Technical Report 73–38, published by U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, August,1973, pp. 113–124.

Rosemount Model 871FN/512AG Icing Rate System, Product Data Sheet 2517 (Rev. June 1998), B.F. Goodrich Aircraft Sensors Division, 14300 Judicial Road, Burnsville, MN 55306.

FAA Inflight Aircraft Icing Plan,April,1997,Federal Aviation Administration, 800 Independence Ave., S.W., Washington, DC 20590.

SpalartP.R. andAllmarasS.R. A one-equation turbulence model for aerodynamic flow: monograph.AIAA Paper, no.92,0439,1992,22 p.

Aupoix B. and Spalart P.R. Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness.International Journal of Heat and Fluid Flow, vol. 24,2003, pp. 454–462.

Alekseyenko S., SinapiusM., SchulzM. and PrykhodkoO.Interaction of Supercooled Large Droplets with Aerodynamic Profile.SAE Technical Paper,2015–01–2118, 2015,12 р.

Alekseyenko S.V., Mendig C., Schulz M., Sinapius M. and Prikhod’ko A.A. An Experimental Study of Freezing of a Supercooled Water Droplet on a Solid Surface. Technical Physics Letters, 2016, vol. 42, no. 5, pp. 524–527. DOI:10.1134/S1063785016050187.

Roe P.L. Annual review of fluid mechanics,1986, vol. 18, pp. 337–365.

Advisory Circular of Federal Aviation Administration 20-73А. Aircraft ice protection, August16, 2006,233 р.

Published

2018-09-25