Method of forecast of mechanical properties of Ст3пс steel

Authors

  • M. O. Aksakov Department of Materials Scienceand Material Processing, State Higher Educational Institution “Prydniprovska State Academy of Civil Engineering and Architecture”, 24-A, Chernyshevskoho St., 49600, Dnipro, Ukraine

DOI:

https://doi.org/10.30838/J.PMHTM.2413.261218.10.559

Keywords:

mechanical properties, steel, perlite, ferrite, fractal dimension, forecasting technique

Abstract

Abstract. Problem statement. The prediction of mechanical properties of metals is mainly based on the analysis of statistical data and the results of direct experiments. When comparing these results, in some cases there are discrepancies between the results of the prediction of mechanical properties based on the quantitative indicators of the structure and the data of field tests. One of the reasons for the divergence of results may be the incompleteness of formal axiomatics in describing the real elements of a structure. Therefore, the paper proposes to use the fractal approach based on the determination of fractal dimensions of the constituents of the structure for the prediction of the mechanical properties of the metal, such as Ст3псsteel. Materials and methodology. Using the methods of regression analysis  and fractal theory,  we obtained a  mathematical  model  for the prediction of the quality criteria  for structural  low-alloy steel Ст3псdepending on the influence of the parameters of the structure and elements of the chemical composition. Research results.The influence of the chemical composition and fractal dimension of the ferrite-pearlite structure on the mechanical properties of the steel was analyzed: tensile strength, yield strength, relative narrowing and elongation, hardness. The adequacy of the obtained results is confirmed by the Kochren and Fisher criteria. By studying the coefficients of the obtained dependences, a histogram describing the effect of the fractal  dimension  of  the  metal  on  the  mechanical  properties  was  obtained.  As  a  result  of  experiments,  it  was  found  that  the  fractal dimension  of  perlite  grains  varies  in  the  range  of 1,662…1,790,  and  the  fractal  dimension  of  ferrite  grains  зер  in  the  range  of 1,955…1,978 with a change in the amount of carbon from 0,14 to 0,22 %. The highest degree of correlation among those considered is established between the fractal dimension of perlite and the indices of strength and hardness of steel 3, and the highest correlation of plasticity indices is set to the fractal dimension of ferrite. The results obtained indicate the possibility of applying fractal geometry to the prediction  of  the  mechanical  properties  of  low  carbon  low  alloy  structural  steels. Conclusions. The  technique of  forecasting  the mechanical  properties  of Ст3пс steel  is  presented  based  on  the  analysis  of  the  influence  of  the  chemical  composition  and  fractal characteristics of the ferrite-perlite structure. It was found that when forecasting the strength and hardness characteristics of steel based on  the  fractal  dimension  of  perlite,  a  correlation  was  observed  within  0,50...0,59;  and  in  the  prediction  of  plastic  properties,  the correlation of 0,64...0,86 is fixed for the fractal dimension of ferrite.

Author Biography

M. O. Aksakov, Department of Materials Scienceand Material Processing, State Higher Educational Institution “Prydniprovska State Academy of Civil Engineering and Architecture”, 24-A, Chernyshevskoho St., 49600, Dnipro

Master of Engineering

References

<p>1. <a href="https://www.google.com.ua/search?hl=ru&amp;tbo=p&amp;tbm=bks&amp;q=inauthor:%22Hans+Berns%22">Berns</a> H. and <a href="https://www.google.com.ua/search?hl=ru&amp;tbo=p&amp;tbm=bks&amp;q=inauthor:%22Werner+Theisen%22">Theisen</a> W. Ferrous materials. Steel and Cast Iron. Berlin Heidelberg: Springer, 2008, 418 p.</p><p>2. Volchuk V.M. <em>Issledovaniya vliyaniya khimicheskogo sostava chugunnykh prokatnykh valkov na ikh mekhanicheskiye svoystva </em>[Studies of the influence of the chemical composition of cast iron rolls on their mechanical properties]. <em>Visnyk Prydniprovs’koyi derzhavnoyi akademiyi budivnytstva ta arkhitektury </em>[Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture]. 2014, no. 5, pp. 12–18. (in Russian).</p><p>3. Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>O</em><em> </em><em>prognozirovanii</em><em> </em><em>kachestva</em><em> </em><em>tselevogo</em><em> </em><em>produkta</em><em> </em><em>v</em><em> </em><em>periodicheskikh</em><em> </em><em>tekhnologiyakh</em><em> </em>[Predicting the quality of a desired product in periodic technologies]. <em>Dopovidi</em><em> </em><em>Natsionalnoi</em><em> </em><em>akademii</em><em> </em><em>nauk</em><em> </em><em>Ukrainy </em>[Reports of the National Academy of Sciences of Ukraine]. 2014, no. 11, pp. 77-81. (in Russian).</p><p>4. Ivantsov S.V., Bolshakov V.I., Laukhin D.V., Beketov A.V., Murashkin A.V.<em> </em><em>Vliyaniye</em><em> </em><em>razmera</em><em> </em><em>austenitnogo</em><em> </em><em>zerna</em><em> </em><em>na</em><em> </em><em>kinetiku</em><em> </em><em>razrusheniya</em><em> </em><em>vysokoprochnykh</em><em> </em><em>stroitel</em><em>'</em><em>nykh</em><em> </em><em>staley</em><em> </em>[Influence of the size of austenitic grain on the kinetics of fracture of high-strength structural steels]. <em>Metallurgicheskaya</em><em> </em><em>i</em><em> </em><em>gornorudnaya</em><em> </em><em>promyshlennost</em><em>'</em> [Metallurgical and Mining]. 2014, no. 1, рр. 70-72. (in Russian).</p><p>5. Mishutn А., Kroviakov S., Pishev O. and Soldo B. Modified expanded clay lightweight concretes for thin-walled reinforced concrete floating structures. Technical Journal, 2017, vol. 11, no. 3, pp. 121-124.</p><p>6. Kroviakov S. and Mishutn A. Production technology of modified expanded clay lightweight concrete for floating structures. The Scientific Journal of Cihan University – Sulaimanyia. 2017, vol. 1, no. 4, pp. 2-10.</p><p>7. Mishutin A.V., Kroviakov S.O., Mishutin N.V., Bogutsky V.L. Modified expanded clay lightweight concretes for thin-walled floating structures / Proceeding of the Second International Conference on Concrete Sustainability (ICCS16), held in Madrid, Spain on 13-15 June 2016 – Barcelona, Spain: International Center for Numerical Method in Engineering, 2016. – P. 743-749.</p><p>8. Bol'shakov Vad.I., Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Chastkova kompensats</em><em>і</em><em>ya nepovnoti formalnoy aks</em><em>і</em><em>omatiki pri </em><em>і</em><em>dentif</em><em>і</em><em>kats</em><em>і</em><em>y structyru metaly </em>[The partial compensation of incompleteness of formal axiomatics in the identification of the metal structure]. <em>Visnyk akademiyi nauk Ukrayiny</em> [Bulletin of the National Academy of Sciences of Ukraine]. 2014, no. 12, pp. 45−48. (in Ukrainian).</p><p>9. Mandelbrot B.B. The Fractal Geometry of Nature. New-York, San Francisco : Freeman, 1982, 480 p.</p><p>10. Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Osobennosti primeneniya mul'tifraktal'nogo formalizma v materialovedenii</em> [Features of the multifractal formalism in materials]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy</em> [Reports of the National Academy of Sciences of Ukraine]. 2008, no. 11, pp. 99-107. (in Russian).</p><p>11. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. Fundamentals of fractal modeling. Kyiv, Ukraine : PH "Akademperiodyka" National Academy of Sciences of Ukraine, 2017, 170 p. (in Russian).</p><p>12. Bol’shakov V., Volchuk V. and Dubrov Yu. Fractals and properties of materials. Saarbrucken: Lambert Academic Publishing, 2016, 140 p.</p><p>13. Volchuk V.M. <em>Primeneniye veyvlet-analiza dlya otsenki zerennoy struktury metallov</em><em> </em>[The use of wavelet analysis to assess the grain structure of metals]. <em>Metallovedenie i termicheskaya obrabotka metallov </em>[Metall Science and Heat Treatment of Metals]. 2009, no. 4, pp. 24–32. (in Russian).</p><p>14. Volchuk V.M. <em>K voprosu o primenenii teorii mul'tifraktalov dlya otsenki mekhanicheskikh svoystv metalla</em> [On the application of the theory of multifractals for the evaluation of the mechanical properties of a metal]. <em>Metallovedenie i termicheskaya obrabotka metallov</em> [Metall Science and Heat Treatment of Metals]. 2014, no. 3, pp. 12–19. (in Russian).</p><p>15. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Organizatsiya fraktal'nogo modelirovaniya</em> [Organization of fractal modeling]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy</em> [Reports of the National Academy of Sciences of Ukraine]. 2018, no. 6, pp. 67-72. (in Russian).</p><p>16. Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Razrabotka i issledovaniye metoda opredeleniya mekhanicheskikh svoystv metalla na osnove analiza fraktal'noy razmernosti yego mikrostruktury </em>[Development and study of the method for determining the mechanical properties of a metal based on an analysis of the fractal dimension of its microstructure]. <em>Metallovedenie i termicheskaya obrabotka metallov </em>[Metall Science and Heat Treatment of Metals]. 2004, no. 1, pp. 43–54. (in Russian).</p><p>17. Volchuk V., Klymenko I., Kroviakov S., Orešković M. Method of material quality estimation with usage of multifractal formalism. Tehnički glasnik - Technical Journal. 2018, vol. 12, no. 2, рр. 93-97.</p><p>18. Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>K</em><em> </em><em>voprosu</em><em> </em><em>o</em><em> </em><em>postanovke</em><em> </em><em>zadachi</em><em> </em><em>identifikatsii</em><em> </em><em>fraktal</em><em>'</em><em>noy</em><em> </em><em>struktury</em><em> </em><em>metalla</em><em> </em>[Statement on the issue of the problem identification of fractal metal structures]. <em>Visnyk Prydniprovs’koyi derzhavnoyi akademiyi</em><em> </em><em>budivnytstva ta arkhitektury </em>[Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture]. 2016, no. 5, <br /> pp. 35–39. (in Russian).</p><p>19. Volchuk V.M. <em>Opredeleniye chuvstvitel'nosti mul'tifraktal'nykh kharakteristik metalla</em> [Determining the sensitivity of the multifractal characteristics of metals]. <em>Visnyk Prydniprovs’koyi derzhavnoyi akademiyi budivnytstva ta arkhitektury</em> [Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture]. 2015, no. 12, pp. 10–14. (in Russian).</p><p>20. Volchuk V.M. <em>Fraktal'nyy analiz ballovoy sistemy</em> [Fractal analysis of the point system]. <em>Visnyk Prydniprovs’koyi derzhavnoyi akademiyi budivnytstva ta arkhitektury</em> [Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture]. 2018, <br /> no. 5, pp. 47–53. (in Russian).</p><p>21. Volchuk V.M. <em>K primeneniyu fraktal'nogo formalizma pri ranzhirovanii kriteriyev kachestva mnogoparametricheskikh tekhnologiy</em> [<a href="http://mfint.imp.kiev.ua/en/abstract/v39/i07/0949.html">On the Application of Fractal Formalism for Ranging Criteria of Quality of Multiparametric Technologies </a>]. <em>Metallofizika i noveyshiye tekhnologii</em> [Metal Physics and Advanced Technologies]. 2017, vol. 39, no 3, рp. 949-957. (in Russian).</p><p>22. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Ranzhirovaniye pokazateley kachestva metalla </em>[The ranking of the quality criteria of the metal]. <em>Metallovedenie i termicheskaya obrabotka metallov </em>[Metall Science and Heat Treatment of Metals]. 2018, <br /> no. 2, pp. 10–16. (in Russian).</p><p>23. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. Regularization of One Conditionally Ill-Posed Problem of Extractive Metallurgy. Metallofizika i Noveishie Tekhnologii, 2018, vol. 40, no. 9, pр. 1165-1171.</p><p>24. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Fraktal'nyy podkhod pri identifikatsii slozhnykh sistem</em> [Fractal approach to the identification of complex systems]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy</em> [Reports of the National Academy of Sciences of Ukraine]. 2017, no. 6, pp. 46-50. (in Russian).</p><p>25. Bolshakov V.I., Dubrov Yu.I., Kryulin F.V<em>.</em> and Volchuk V.M. <em>Sposib</em><em> </em><em>vyznachennya</em><em> </em><em>fraktal</em><em>’</em><em>noyi</em><em> </em><em>rozmirnosti</em><em> </em><em>zobrazhennya</em> [Method for determining fractal dimensionality of an image]. Patent product no. 51439А, UA. MPK 7 G06K9/00, bulletin no. 11, 2002. (in Ukrainian).</p>

Published

2018-12-26