# MODELING PROPERTIES OF STRUCTURAL MATERIALS

## DOI:

https://doi.org/10.30838/J.PMHTM.2413.260222.21.629## Keywords:

steel Ст3, microstructure, fractal, mechanical properties, model## Abstract

** Relevance of the work. **The search for the relationship between the structure and properties of materials remains one of the priority tasks of materials science. Since the processes of structure formation take place for most materials in open systems, based on this, many parameters of the technology influence their properties. The elements of the structure may have a complex geometric configuration. For example, in the heat treatment of structural steels various structures are obtained. Proceeding from the decomposition products of austenite, they can be Widmanstett and needle ferrite, martensite, bainite, and others. Modeling Euclidean figures of elements of such structures encounters certain difficulties, which consists in finding an adequate metric for their approximation. This affects the accuracy of the results of evaluating the material properties based on their structure analysis. Therefore, based on recent publications, it is proposed to apply the fractal approach to modeling the properties of structural materials.

**In the work the effect of ferrite-bainitic structure on the mechanical properties of Ст3 structural steel (0,16 % C) was studied. This approach was implemented by comparing the results of calculating the fractal dimension of bainite and mechanical properties. The calculation of the fractal dimension of the structure was carried out according to a patented method. Steel samples were heat treated.**

*Materials and methods.***Models for predicting the mechanical properties of Ст3 steel are constructed based on the analysis of the fractal dimension of bainite and ferrite. A correlation within**

*Results and discussion.**R*= 0,39...0,81 was established between these characteristics. The results of the work indicate the possibility of using the fractal formalism for evaluating bainite and ferrite at the microstructural level (´500).

^{2}**The sensitivity of relative elongation and impact strength to fractal dimension of the abrasive ferrite, as well as yield strength, strength limit and elongation relative to the fractal dimension of bainite was recorded. The strength and hardness indices became the most sensitive to grain boundaries.**

*Scientific novelty.***An approach to forecasting the mechanical properties of Ст3 structural steel with a ferritic-bainitic structure by fractal modeling is implemented.**

*Conclusions.*## References

Mishutin A., Kroviakov S., Pishev O. and Soldo B. Modified expanded clay light weight concretes for thinwalled reinforced concrete floating structures. Tehnički glasnik − Technical Journal. 2017, vol. 11, no. 3, pp. 121-124.

Kroviakov S., Mishutin A. and Pishev O. Management of the Properties of Shipbuilding Expanded Clay Lightweight Concrete. International Journal of Engineering & Technology. 2018, [S.l.], vol. 7, no. 3.2, pp. 245-249.

Kroviakov S. and Mishutin A. Production technology of modified expanded clay lightweight concrete for floating structures. The Scientific Journal of Cihan University – Sulaimanyia. 2017, vol. 1, no. 4, pp. 2-10.

Uzlov O. and Bolchakov V. Investigation of Acicular Ferrite Structure in HSLA Steel. Proceedings of the "Materials Week 2002". Frankfurt : Werkstoff-Informationsgesellschaft, 2002. Pp. 14-20.

Dubrov Yu.I., Volchuk V.N. and Bol’shakov V.I. Primeneniye ekspertnoy informatsii pri formirovanii aktivnogo eksperimenta v materialovedenii [Application of expert information in the formation of an active experiment in materials science]. Modelirovanie i optimizaciya v materialovedenii : mater. k 40-j mezhdunar. sem. po modelirovaniyu i optimizacii kompozitov [The modeling and optimization in materials science : proc. of 40th Int. Conf.]. Odessa, 2001, pp. 25−26. (in Russian).

Kroviakov S., Zavoloka M., Dudnik L. and Kryzhanovskyi V. Comparison of strength and durability of concretes made with sulfate-resistant portland cement and portland cement with pozzolana additive. Electronic Journal of the Faculty of Civil Engineering Osijek-e-GFOS. 2019, vol. 10, no. 19, pр. 81-86.

Lyashenko Т., Voznesensky V. and Krovyakov S. Analysis of water effect on fracture toughness in cementbased composites using computational materials science methods. In: International symposium on brittle matrix composites. 2000, pp. 210−219. 8. Bol'shakov V.I., Volchuk V.N., Deyneko L.N. and Dubrov Yu.I. Kompozitsiya metoda planirovaniya ekstremal'nykh eksperimentov i ekspertnoy informatsii dlya formirovaniya sistemy prognoza kachestva materialov [Composition of a method for planning extreme experiments and expert information for the formation of a material quality prediction system]. Perspektivnyye zadachi inzhenernoy nauki [Perspective tasks of engineering science]. Dnipropetrovsk : GAUDEAMUS, 2001, vol. 2. pp. 203-208. (in Russian).

Bol’shakov V.I., Volchuk V.N., Dubrov Yu.I. and Deyneko L.N. Formirovanie modeli prognoza kachestva materiala, osnovannoj na `ekspertnoj ocenke i aktivnom `eksperimente [Formation of a model for predicting the quality of a material based on expert judgment and an active experiment]. Komp'yuternoe materialovedenie i obespechenie kachestva : mater. k 45-mu mezhdunar. sem. po modelirovaniyu i optimizacii kompozitov [Computer Science and Quality Assurance : mater. to the 45th Intern. Sem. on modeling and optimization of composites]. Odessa : AstroPrint, 2006, pp. 146−150. (in Russian).

Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. O prognozirovanii kachestva tselevogo produkta v periodicheskikh tekhnologiyakh [Predicting the quality of a desired product in periodic technologies]. Dopovidi Natsionalnoi akademii nauk Ukrainy [Reports of the National Academy of Sciences of Ukraine]. 2014, no. 11, pp. 77-81. (in Russian).

Bol’shakov Vad.I., Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. Systemnyy analiz tekhnolohiyi vyrobnytstva masyvnoho metalevoho lyttya [System analysis techniques of producing solid metal castings]. Visnyk Natsional'noyi akademiyi nauk Ukrayiny [Bulletin of the National Academy of Sciences of Ukraine]. 2015, no. 9, pp. 69–73. (in Ukrainian).

Dubrov Yu., Bolshakov V. and Volchuk V. Puti identifikatsii periodicheskikh mnogokriterial'nykh tekhnologiy [Road periodic identification of multi-criteria Technology]. Saarbrucken : Palmarium Academic Publishing, 2015, 236 p. (in Russian).

Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. O primenenii fraktal'nogo formalizma pri matematicheskom opisanii struktur [The fractal application formalism in mathematical description of the structure]. Metaloznavstvo ta termichna obrobka metaliv [Metall Science and Heat Treatment of Metals]. 2016, no. 2. pp. 26−33. (in Russian).

Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. K voprosu o postanovke zadachi identifikatsii fraktal'noy struktury metalla [Statement on the issue of the problem identification of fractal metal structures]. Visnyk Prydniprovs’koyi derzhavnoyi akademiyi budivnytstva ta arkhitektury [Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture]. 2016, no. 5, pp. 35–39. (in Russian).

Bol’shakov V., Volchuk V. and Dubrov Yu. Puti primeneniya teorii fraktalov [Ways of applying the theory of fractals]. Saarbrucken : Palmarium Academic Publishing, 2016, 146 p. (in Russian).

Volchuk V. and Dubrov Y. Ways of compensation of incomplete formal axiomatics in identification of complex objects. Metaloznavstvo ta termіchna obrobka metalіv [Physical Metallurgy and Heat Treatment of Metals]. 2018, no. 4, pp. 31–35.

Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 1931, vol. 38, no. 1, рр. 173-198. (in Germany).

Bol'shakov Vad.I., Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. Chastkova kompensatsiya nepovnoty formalʹnoyi aksiomatyky pry identyfikatsiyi struktury metalu [The partial compensation of incompleteness of formal axiomatics in the identification of the metal structure]. Visnyk akademiyi nauk Ukrayiny [Bulletin of the National Academy of Sciences of Ukraine]. 2014, no. 12, pp. 45−48. (in Ukrainian).

Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. Materialovedcheskiye aspekty primeneniya chastichnoy kompensatsii nepolnoty formal'noy aksiomatiki [Material aspects of use of partial compensation of incompleteness of formal axiomatics]. Visnyk Prydniprovs’koyi derzhavnoyi akademiyi budivnytstva ta arkhitektury [Bulletin of Prydniprovska State Academy of Civil Engineering and Architecture]. 2015, no. 5, pp. 10–16. (in Russian).

Mandelbrot B. B. The Fractal Geometry of Nature. Nev-Yuork, San Francisco Freeman, 1982, 480 p.

Zhuravel' I.M. and Svirs'ka L.M. Measurement of the mean grain size in a metal by using fractal dimensions. Materials Science. 2015, vol. 46, no. 3, рp. 418−420.

Zhuravel' I.M. Computer Analysis of the Distribution of Grain Sizes in the Structure of 12Kh1MF Steel After Operation. Materials Science. 2019, vol. 55, no. 2, рp. 187−192.

Bolshakov V., Volchuk V. and Dubrov Yu. Fractals and properties of materials. Saarbrucken : Lambert Academic Publishing, 2016, 140 p.

Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. Regularization of One Conditionally ill-Posed Problem of Extractive Metallurgy. Metallofizika i Noveishie Tekhnologii. 2018, vol. 40, no 9, рp. 1165−1171.

Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. Topologicheskiye i fraktal'nyye invarianty struktury dlya otsenki kachestva metalla [Topological and fractal invariants of a structure to assess the quality of a metal]. Dopovidi Natsionalnoi akademii nauk Ukrainy [Reports of the National Academy of Sciences of Ukraine]. 2017, no. 4, pp. 42-48. (in Russian).

Volchuk V.M. Rozroblennia i doslidzhennia metodu vyznachennia yakisnykh kharakterystyk metalu na osnovi analizu fraktalnoi rozmirnosti yoho mikrostruktury : diss. na soisk. uchen. step. kand. tehn. nauk : 05.02.01 [Development and research of the method for determining the qualitative characteristics of a metal on the basis of an analysis of the fractal dimension of its microstructure : Candidate Dissertation for Technical Sciences (05.02.01 – Materials Science)]. Dnipropetrovsk, 2003, 186 p. (in Ukrainian).

Bol'shakov V.I., Volchuk V.M. and Dubrov Yu.I. Primeneniye fraktal'nogo modelirovaniya pri otsenke struktury i svoystv metallov [Application of fractal modelling at the estimation of the structure and properties of metals]. Metaloznavstvo ta termichna obrobka metaliv [Metall Science and Heat Treatment of Metals]. 2018, no. 1, pp. 50−55. (in Russian).

Volchuk V., Klymenko I., Kroviakov S. and Orešković M. Method of material quality estimation with usage of multifractal formalism. Tehnički glasnik − Technical Journal. 2018, vol. 12, no. 2, рр. 93-97.

Volchuk V.N. K voprosu o primenenii teorii mul'tifraktalov dlya otsenki mekhanicheskikh svoystv metalla [On the application of the theory of multifractals for the evaluation of the mechanical properties of a metal]. Metallovedenie i termicheskaya obrabotka metallov [Metall Science and Heat Treatment of Metals]. 2014, no. 3, pp. 12–19. (in Russian).

Volchuk V.M. Modelʹ otsinyuvannya tverdosti chavunnykh valkiv СПХН-43 ta СШХНФ-47 [Model of assessment of the hardness of the iron rollers СПХН-43 and СШХНФ-47]. Metallovedenie i termicheskaya obrabotka metallov [Physical Metallurgy and Heat Treatment of Metals]. 2014, no. 3, pp. 12–19. (in Russian).

Kroviakov S., Volchuk V., Zavoloka M., and Kryzhanovskyi V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. In: Materials Science Forum. Trans Tech Publications Ltd, 2019, vol. 968, pp. 20−25.

Volchuk V.M. K primeneniyu fraktal'nogo formalizma pri ranzhirovanii kriteriyev kachestva mnogoparametricheskikh tekhnologiy [On the Application of Fractal Formalism for Ranging Criteria of Quality of Multiparametric Technologies ]. Metallofizika i noveyshiye tekhnologii [Metal Physics and Advanced Technologies]. 2017, vol. 39, no 3, рp. 949−957. (in Russian).

Bol’shakov V.I., Volchuk V.M. and Dubrov Yu.I. Ranzhirovaniye pokazateley kachestva metalla [The ranking of the quality criteria of the metal]. Metallovedenie i termicheskaya obrabotka metallov [Metall Science and Heat Treatment of Metals]. 2018, no. 2, pp. 10–16. (in Russian).

Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. Razrabotka i issledovaniye metoda opredeleniya mekhanicheskikh svoystv metalla na osnove analiza fraktal'noy razmernosti yego mikrostruktury [Development and study of the method for determining the mechanical properties of a metal based on an analysis of the fractal dimension of its microstructure]. Metallovedenie i termicheskaya obrabotka metallov [Metall Science and Heat Treatment of Metals]. 2004, no. 1, pp. 43–54. (in Russian).

Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. Fraktal'noye modelirovaniye struktury malouglerodistoy stali [Fractal modeling of the structure of low-carbon steel]. Metallovedenie i termicheskaya obrabotka metallov [Metall Science and Heat Treatment of Metals]. 2018, no. 2, pp. 45–51. (in Russian).

Bol’shakov V.I., Dubrov Yu.I., Kryulin F.V. and Volchuk V.N. Sposib vyznachennya fraktal’noyi rozmirnosti zobrazhennya [Method for Determining the Dimensionality of Images]. Patent product no. 51439А, UA. MPK 7 G06K9/00, bulletin no. 11, 2002. (in Ukrainian).

Hausdorff G. Dimension und auberes Mab. Mathematische Annalen. 1919, vol. 79, рр. 157-179. (in Germany).

Crownover R.M. Introduction to Fractals and Chaos. Boston, London : Jones and Bartlett Publishers, Inc., 1995, 480 p.

Bol’shakov V.I., Volchuk V.N. and Dubrov Yu.I. Fraktaly v materialovedenii [Fractals in materials]. Dnepropetrovsk : PSACEA, 2005, 253 p. (in Russian).

Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. Fundamentals of fractal modeling. Kyiv, Ukraine : PH "Akademperiodyka" National Academy of Sciences of Ukraine, 2017, 170 p. (in Russian).

Bolshakov V.I., Volchuk V. M. and Dubrov Yu.I. Organizatsiya fraktal'nogo modelirovaniya [Organization of fractal modeling]. Dopovidi Natsionalnoi akademii nauk Ukrainy [Reports of the National Academy of Sciences of Ukraine]. 2018, no. 6, pp. 67-72. (in Russian).

Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. Osobennosti primeneniya mul'tifraktal'nogo formalizma v materialovedenii [Features of the multifractal formalism in materials]. Dopovidi Natsionalnoi akademii nauk Ukrainy [Reports of the National Academy of Sciences of Ukraine]. 2008, no. 11, pp. 99-107. (in Russian).

Bunin K.P. and Baranov A.A. Metallografiya [Metallography]. Moscow : Metallurgiya Publ., 1970, 256 p. (in Russian).

Bhadeshia H.K.D.H. Bainite in Steels : Transformations, Microstructure and Properties. London, UK : 2nd ed.; IOM Communications, 2001, 735 р.

Berns H., Theisen W. Ferrous materials: Steel and Cast Iron. Berlin Heidelberg: Springer, 2008, 418 p.

## Downloads

## Published

## Issue

## Section

## License

Authors that are published in this journal agree to follow the conditions:

Authors reserve the right to the authorship of his work and cede the right to the journal of first publication of this work on conditions of the license under the Creative Commons Attribution License, which allows others to distribute it freely with the obligatory reference to the author of the original work and the first publication of the work in this journal.