Influence of high pressure torsion on the texture and properties formation of the steel 01AlTi

Authors

  • Kutzova V. Z. National Metallurgical Academy of Ukraine, Ukraine
  • Stetsenko G. V. National Metallurgical Academy of Ukraine, Ukraine
  • Kotova T. V. National Metallurgical Academy of Ukraine, Ukraine

Keywords:

IF-steel, Pole Figures (PF), nanoindentation, Young's modulus, severe plastic deformation (SPD), hydrostatic pressure torsion (HPT)

Abstract

Abstract. Formulation of the problem. The progress of the global automotive industry confronts developers of automotive steel task of reducing vehicle weight, reduce its production costs, increase security level during operation of the vehicle. The most widely used for this purpose are low alloy steels with conventional hardening mechanisms (grain refinement, precipitation hardening and solid solution hardening), as well as promising IF-steels. However, increasing the strength of metal materials usually leads to a decrease in their plasticity. Achieving high strength and ductility required for the creation of new advanced structural and functional materials, it is one of their basic materials science problems. Presented results of the texture researches of steel 01AlTi after severe plastic deformation (SPD) by torsion under hydrostatic pressure (HPT) at the 25 °C. Conclusion. It is found that after hot rolling with the next deformation by HPT method saved texture with components stored texture {100} and {111}. It is shown that in the process of deformation has been actively developed mechanisms such as a shift along the grain boundaries and crystallographic slip, although its contribution to the formation of the texture is less pronounced. Hardness after HPT 2 times higher, modulus of elasticity hardly changes in comparison with the initial state, and the ductility is retained at a high level.

Author Biographies

Kutzova V. Z., National Metallurgical Academy of Ukraine

Department of material science, Doct. Sc. (Tech.), Prof.

Stetsenko G. V., National Metallurgical Academy of Ukraine

Department of material science, postgraduate student

Kotova T. V., National Metallurgical Academy of Ukraine

Department of material science, Ph. D., Ass. Prof.

References

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Механические свойства металлов : монография / [М. Л. Бернштейн, В. А. Займовский]. − Москва : Металлургия, 1979. − 495 с.

Физические основы прочности тугоплавких материалов : моногорафия / [В. И. Трефилов, Ю. В. Мильман, С. А. Фирстов]. − Киев: Наукова думка, 1975. − 315 с.

Бернштейн М. Л. Структура деформированных металлов : монография / М. Л. Бернштейн. − Москва : Металлургия, 1977. − 431 с.

Прочность и пластичность холоднодеформированной стали : монография / [В. Н. Гриднев, В. Г. Гаврилюк, Ю. Я. Мешков]. − Киев : Наукова думка, 1974. − 232 с.

Астанин В. В. Масштабный фактор и сверхпластичность сплава Al − 6 % Cu − 0,4 % Zr / В. В. Астанин // Физика металлов и металловедение. − 1995. − Т. 79. − № 3. − С. 166−173.

Разрушение деформированной стали : монография / [Ю. Я. Мешков, Т. Н. Сердитова]. − Киев : Наукова думка, 1989. − 160 с.

Структура металла и хрупкость стальных изделий : монография / [Ю. Я. Мешков, Г. А. Пахаренко]. − Киев : Наукова думка, 1985. − 268 с.

Скуднов В. А. Предельные пластические деформации металлов : монография / В. А. Скуднов. − Москва : Металлургия, 1988. − 176 с.

Деформационное упрочнение и разрушение поликристаллических материалов : монография / [В. И. Трефилов, В. Ф. Моисеев, Э. П. Печковский, И. Д. Горная, А. Д. Васильев]. − Киев : Наукова думка, 1989. − 256 с.

Каверина С. Н. Особенности формирования деформационной структуры в ГЦК-металлах в интервале температур 0,05−0,5 Тпл / С. Н. Каверина, Э. П. Печковский, Г. Ф. Саржан, С. А. Фирстов // Металлофизика и новейшие технологии. − 2002. − Т. 24. – № 2. − С. 251−269.

Mishra R. S. Mechanism of high strain rate superplasticity in aluminum alloy composites / R. S. Mishra, T. R. Bieler,

A. K. Mukherjee // Acta Mater. − 1997. − Vol. 45. − № 2. − Pp. 561−568.

Малинин Н. Н. Прикладная теория пластичности и ползучести : монография / Н. Н. Малинин. − Москва : Машиностроение, 1975. − 400 c.

Mazurski M. I. A New Theoretical Concept for Micrograin Superplasticity Providing the Prediction of the Optimum Conditions for Superplastic Deformation / M. I. Mazurski, F. U. Enikeev // Physica Status Solidi. − 1998. − Vol. 206. − Pp. 519−534.

Kuhlmann-Wilsdorf D. Theory of Plastic Deformation: properties of low energy dislocation structures / D. Kuhlmann-Wilsdorf // Mat. Sci. and Eng. A. − 1989. − Vol. 113A. − Pp. 1−41.

Бочвар А. А. О разных механизмах пластичности в металлических сплавах / А. А. Бочвар // Металловедение и термическая обработка металлов. − 2002. − № 11. − С. 53−56.

Кузнецов Р. И. Пластическая деформация твердых тел под давлением / Р. И. Кузнецов, В. И. Быков, В. П. Чернышев, В. П. Пилюгин, Н. А. Ефремов, А. В. Пашеев // Препринт 4/85, ИФМ УРО АН СССР. Свердловск. СССР. − 1985.

Oliver W. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology / W. Oliver, G. Pharr //J. Mater. Res. – 2004. – Vol. 19. – № 1. – Pp. 3−20.

Бородкина М. М. Рентгенографический анализ текстуры металлов и сплавов / М. М. Бородкина, Э. Н. Спектор. – Москва : Металлургия, 1981. – 272 с.

Дедек В. Полосовая сталь для глубокой вытяжки / В. Дедек. – Москва : Металлургия, 1970. – 208 с.

Лукин Ю. С. Формирование кристаллографической текстуры в легированных титаном IF-сталях / Ю. С.Лукин, С. В. Бахтин, А. С. Лукин [и др.] // Сталь. – 2009. – № 11. – С. 85–87.

Мильман Ю. В. Характеристика пластичности, определяемая методом индентирования / Ю. В. Мильман, С. И. Чугунова, И. В. Гончарова // Вопросы атомной науки и техники. – 2011. – № 4. – C. 182−187.

International Standard ІSО 14577-1-2002(Е).

Milman Yu. V. Acta Metall. Mater. / Yu. V. Milman, B. A. Galanov, S. I. Chugunova. − 41. − №. 9. − 2523 (1993).

REFERENCES

Bernshtein M.L. and Zaimovsry V.A. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. Mosсow : Metallurgia Publ., 1979, 495 p. (in Russian).

Trefiliv V.I., Milman U.V. and Firstov S.A. Fisicheskie osnovy prochnosti tugoplavkikh materialov [Physical basis of the strength of refractory materials]. Kiyv : Naukova Dumka Publ., 1975, 315 p. (in Russian).

Bernshtein M.L. Structura deformirovannykh metallov [The structure of deformed metal] Mosсow : Metallurgia Publ., 1977, 431 p. (in Russian).

Gridnev V.N., Gavriluk V.G. and Meshkov U.Ya. Prochnost i plastichnost kholodnodeformirovannoy stali [The strength and ductility of cold steel ]. Kiyv : Naukova Dumka Publ., 1974, 232 p. (in Russian).

Astanin V.V. Masshtabnyi factor I sverkhplastichnost splava Al−6%Cu−0,4%Zr [The scale factor and alloy superplasticity]. Fisika metallov i metallovedenie [The Physics of Metals and Metallography]. 1995, vol. 79, no. 3, pp. 166−173. (in Russian).

Meshkov U.Ya. and Serditova T.N. Razrushenie deformirovannoy stali [Destruction of deformed steel]. Kiyv : Naukova Dumka Publ., 1989, 160 p. (in Russian).

Meshkov U.Ya. and Pakharenko G.A. Structura meyalla i khrupkost stalnykh izdeliy [Metal structure and the fragility of the steel products ]. Kiyv : Naukova Dumka Publ., 1985, 268 p. (in Russian).

Scudnov V.A. Predelnie plasticheskie deformatzii metallov [Limit the plastic deformation of metals]. Mosсow : Metallurgia Publ., 1988, 176 p. (in Russian).

Trefilov V.I., Moiseev V.F., Pechkovskyi E.P., Gornaya I.D. and Vasilev A.D. Deformatzionnoe uprochnenie i razrushenie policristallicheskikh materialov [Strain hardening and destruction of polycrystalline materials]. Kiyv : Naukova Dumka Publ., 1989, 256 p. (in Russian).

Kaverina S.N., Pechkovskiy E.P., Sargan G.F. and Firstov S.A Osobennosti formirovaniya deformatzionnoi structury v GTZK-metallakh v intervale temperature 0,05−0,5Тpl [Features of formation of the information structure in the GTsK-metals in the range of temperatures 0,0−0,5Tpl]. Metallofizika i Noveishie Tekhnologii [Metal Physics and Advanced Technology]. 2002, vol. 24, no. 2, pp. 251−269. (in Russian).

Mishra R.S., Bieler T.R. and Mukherjee A.K. Mechanism of high strain rate superplasticity in aluminum alloy composites. Acta Mater, 1997, vol. 45, no. 2, pp. 561−568.

Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]. Mosсow : Mashinostroenie Publ., 1975, 400 p. (in Russian).

Mazurski M.I. and Yenikeev F.U. A New Theoretical Concept for Micrograin Superplasticity Providing the Prediction of the Optimum Conditions for Superplastic Deformation. Physica Status Solidi, 1998, vol. 206, pp. 519−534.

Kuhlmann-Wilsdorf D. Theory of Plastic Deformation: properties of low energy dislocation structures. Mat. Sci. and Eng. A., 1989, vol. 113A, pp. 1−41.

Bochvar A.A. O raznykh mekhanizmakh plastichnosti v metallicheskikh splavakh [About the various mechanisms of plasticity in metal alloys]. Metallovedenie i termicheskaya obrabotka metallov [Metal Science and Heat Treatment of Metals]. 2002, no. 11, pp. 53−56. (in Russian).

Kuznetsov R.I., Bykov V.I., Chernyshev V.P., Pilugin V.P., Yefremov N.A. and Pasheev A.V. Plasticheskaya deformaciya tverdyh tel pod davleniem [Plastic deformation of solids under pressure]. Preprint 4/85, IFM URO AS USSR, Sverdlovsk, USSR, 1985. (in Russian).

Oliver W. and Pharr G. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 2004, vol. 19, no. 1, pp. 3−20.

Borodkina M.M. and Spektor E.N. Rentgenograficheskiy analiz textury metallov i splavov [Radiographic analysis of the texture of metals and alloys]. Mosсow : Metallurgia Publ., 1981, 272 p. (in Russian).

Dedek V.l. Polosovaya stal dlya glubokoy vytyagki [Steel strip for deep drawing]. Mosсow : Metallurgia Publ., 1970, 208 p. (in Russian).

Lukin U.S., Bakhtiv S.V. and Lukin A.S. Formirovanie kristallograficheskoy tekstury v legirovannykh titanom IF-stalyah [The formation of crystallographic texture in titanium alloyed IF-steels]. Stal’ [Steel]. 2009, no. 11, pp. 85−87.

Milman U.V. Chugunova S.I. and Goncharova I.V. Kharakteristika plastichnosti, opredelyaemaya metodom indentirovaniya [Plasticity characteristic defined indentation method]. Voprosy atomnoy nauki i tekhniki [Problems of Atomic Science and Technology]. 2011, no. 4, pp. 182−187. (in Russian).

International Standard ІSО 14577-1-2002(Е).

Milman Yu.V., Galanov B.A. and Chugunova S.I. Acta Metall. Mater., 41, no. 9: 2523 (1993).

Published

2016-09-29