On the practical application of carbon-containing nanocomposites

Authors

Keywords:

polymers, nanocomposites, polyethylene terephthalate, PET, carbon nanostructures, concrete

Abstract

Raising of problem. The ever increasing demand for low-quality packaging materials for the food and pharmaceutical industries has led to the creation of mnogotonazhnyh production of polyethylene terephthalate (PETF) and thus necessitated their subsequent disposal or recycling. One promising avenue is to provide utilization of recycled polymer fibers and the subsequent production of a nonwoven fabric having a tremendous prospects for use in construction, engineering and so on. The main problem of its application, especially in construction, due to fire hazard. In the development of polymeric non-combustible materials, there are three main areas: malogoryuchih synthesis of base polymers, chemical and physical modification and the use of flame retardants (fire retardants). Therefore, to reduce the flammability of PETF need to create conditions that would have contributed to slowing down the process of pyrolysis and the formation of a protective layer of carbonized. The practical significance of the work is determined by the demand for a large variety of industries in materials with significantly higher resource mechanical and performance properties. This applies to both metal and polymer materials based on cement and other binders. Purpose - to create conditions for reducing the flammability of PETF that would help slow down the process of pyrolysis and the formation of a protective layer of carbonized. Materials and methods of research. Studies of the structure carbonaceous composites were conducted using modern methods of structural analysis: Transmission electron microscopy (TEM) − JEM-2010; scanning electron microscopy (SEM): Quanta 200 3D, FEi Inc., The Netherlands; JSM-7600F. Experimental results and discussion. Analysis of the existing technological schemes of production of PET fibers suggests the best options for the introduction of the ONS in the polymer structure: introduction, together with recycled plastic in the melting zone. The introduction of CNT funkionalizirovannyh carboxyl groups of the heavy concrete leads to a significant increase in the early strength. On the 28th day of gains strength as compared to the reference sample was 70…90 %. Conclusion. In terms of the real process are identified and tested options for the introduction of carbon nanomaterials in the polymer fiber. An original way of introducing carbon nanostructures in the polymer fiber. In an experimental batch of representative fibers, and needle-punched mats, set low flammability carbonaceous polymer nanocomposite. Based on studies developed production schedules of production of polymer fibers low flammability. transferred enterprise LLC "Vladpoliteks" (Russian Federation).

Author Biography

V. Ye. Vaganov, State Higher Education Establishment “Pridneprovsk State Academy of Civil Engineering"

Department of Materials Science, Ass. of Prof.

References

Ваганов В. Е. Исследование влияния углеродных нанотрубок на горючесть композитов на основе полиэтилентерефталата / В. Е. Ваганов, С. М. Ломакин, Е. В. Нефедова [и др.] // Известия вузов. Серия «Химия и химические технологии». - 2013. - Т. 56. - № 7.-

С. 94-98.

Vaganov V.E., Lomakin S.M., Nefedova E.V. [and etc.]. Issledovaniye vliyaniya uglerodnykh nanotrubok na goryuchest' kompozitov na osnove polietilentereftalata [Investigation of the effect of carbon nanotubes on the flammability of composites based on polyethylene terephthalate]. Izvestiya vuzov. Seriya «Himiya i himicheskie tehnologii» [Proceedings of the universities. A series of "Chemistry and chemical technology"]. 2013, vol. 56, no. 7, pp. 94-98. (in Russian).

Ваганов В. Е. Химическая модификация углеродных нанотрубок / Д. А. Шибаев В. Ю. Орлов, Д. А. Базлов, В. Е. Ваганов // Известия вузов. Серия «Химия и химические технологии». – 2011. – Т. 54. – № 7. – С. 38–41.

Shibaev D.A, Orlov V.Yu., Bazlov D.A. and Vaganov V.E. Khimicheskaya modifikatsiya uglerodnykh nanotrubok [Chemical modification of carbon nanotubes]. Izvestiya vuzov. Seriya «Himiya i himicheskie tehnologii» [Proceedings of the universities. A series of "Chemistry and chemical technology”]. 2011, vol. 54, no. 7, pp. 38–41. (in Russian).

Ваганов В. Е. Основные тенденции создания наноструктурированных материалов / В. А. Кечин, В. Е. Ваганов // Металлургия и машиностроение. – 2010. – № 2. – С. 27-30.

Kechin V.A. and Vaganov V.E. Osnovnyye tendentsii sozdaniya nanostrukturirovannykh materialov [Main tendencies of creating nanostructured materials]. Metallurgiya i mashinostroenie [Metallurgy and mechanical engineering]. 2010, no. 2, pp. 27-30. (in Russian).

Ваганов В. Е. Влияние углеродсодержащих наноструктур на оптические и физические свойства материалов, включая жидкие кристаллы / Н. В. Каманина, В. Е. Ваганов // Жидкие кристаллы. – 2010. – № 2. – С. 5–24.

Kamanina N. V., Vaganov V. E. Vliyaniye uglerod-soderzhashchikh nanostruktur na opticheskiye i fizicheskiye svoystva materialov vklyuchaya zhidkiye kristally [Influence of carbon-containing nanostructures in the optical and physical properties of materials including liquid crystals] Zhidkie kristally [Liquid Crystals]. 2010, no. 2, pp. 5–24. (in Russian).

Ваганов В. Е. Структура и свойства ячеистого бетона, модифицированного углеродными наноструктурами / В. Е. Ваганов,

В. Д. Захаров, Л. В. Закревская [и др.] // Строительные материалы. - 2010. - № 9. - С. 59-62.

Vaganov V.E., Zakharov V.D., Zakrevskaya L.V. [and etc.]. Struktura i svoystva yacheistogo betona modifitsirovannogo uglerodnymi nanostrukturami [Structure and properties of cellular concrete modified carbon nanostructures]. Stroitel'nye materialy [The Building Materials]. 2010, no. 9, pp. 59–62. (in Russian).

Baird T., Fryer J. and Grant B. Carbon Formation on Iron and Nickel Foils by Hydrocarbon Pyrolysis-Reactions at 700 °C. Carbon, 1974,

vol. 12, no. 5, pp. 591–602. (in English).

Charlier J.C., DeVita A., Blasé X. etc. Microscopic growth mechanisms for carbon nanotubes. Science, 1997, vol. 275, pp. 646–649. (in English).

Dai H., Wong E.W., and Lieber C.M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science, 1996, vol. 272, pp. 523–526. (in English).

Endo M. and Kroto H. Formation of carbon nanofibers. J. Phys. Chem., 1992, vol. 96, pp. 6941–6944. (in English).

Koyama T. Formation of Carbon Fibers from Benzene. Carbon, 1972, vol. 10, no. 6, pp. 757-758. (in English).

Laplaze D., Bernier P., Maser W. and etc. Carbon nanotubes: the solar approach. Carbon, 1998, vol. 36, no. 5-6, pp. 685-688. (in English).

Oberlin A., Endo M. and Koyama T. Filamentous growth of carbon through benzene decomposition. J. of Crystal Growth, 1976, vol. 32,

pp. 335-349. (in English).

Rodriguez N.M. A review of catalytically grown carbon nanofibers.

J. Mater. Res., 1993, vol. 8, no. 12, pp. 3233-3250. (in English).

Tibbets G.G. Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl. Phys. Lett., 1983, vol. 42, pp. 666-667.

(in English).

Tibbets G.G. Why Are Carbon Filaments Tubular. Appl. Phys. Lett., 1984, vol. 66, pp. 632. (in English).

Published

2015-12-19