The researching of physical-mechanical properties of intermetallic catalysts obtained in shs conditions

Authors

Keywords:

SHS, intermetallic, catalysts, porosity, durability, thermal stability

Abstract

 Purpose. For nickel aluminides along with traditional methods of casting and powder metallurgy, recently began to use the technology self-propagating high-temperature synthesis (SHS). You must install the regularities of formation porosity and strength intermetallic catalysts when changing the SHS process and the degree of doping. Methodology. As starting components used pure powders of nickel, aluminum, cobalt, copper, and manganese oxide. Dispersible powders was 100–150 mkm. Scheme batch cooking involved dosing, mixing, mold filling, SHS compaction and heat treatment. The mechanical strength of samples was determined via UG-20 machine. Compression testing was performed according to GOST 25.503-97. Thermal analysis of the test sample was performed on the brand Derivatograph Q1050. The microstructure of the obtained catalysts were tested for light microscope «Neophot-21» and a scanning electron microscope «SEM-100». Findings. Analysis of the results of physical and mechanical properties of intermetallic catalysts showed that they differ depending on the mixture composition and process mode processing. The difference in the physical and mechanical properties of the catalyst is due to differences in the structure, phase composition, the porosity and pore size. The introducing additives porosity manganese catalyst is increased by increasing the volume of large pores and the structure with small capillaries not change due to the localization of manganese oxide in the catalyst pores. However, with the introduction of additives manganese sharply reduced mechanical strength blanks which may be increased if the Ni–Co–Mn catalyst additionally prolegirovat copper. An important advantage of SHS mode, is that the strength of the catalyst is 

1,5 times higher than that of the sintered materials at the same porosity. High process temperatures and low content of impurities at the grain boundary (due to self-cleaning) lead to the formation of strong bonds between the grains in the polycrystal. The average value for all of the specific surface of the catalyst is tested samples 112 m2/g. Analysis of the initial sample derivatograms
Ni–Co–Mn–Cu gave weight gain of the sample at temperatures ranging from 200–300 oС 2 % by weight. Originality. New scientific evidence on the effect of mode of SHS process and the degree of doping on the porosity and strength of the intermetallic catalysts. The parameters of the thermal stability of intermetallic catalysts. Practical value. The parameters of SHS pressing and doping levels to increase the porosity and plasticity of intermetallic catalysts.

 

Author Biographies

B. P. Sereda, Zaporozhye State Engineering Academy

Department of Ferrous Metallurgy, Professor

Yu. А. Belokon’, Zaporozhye State Engineering Academy

Department of Ferrous Metallurgy, Doctoral student

K. V. Belokon’, Zaporozhye State Engineering Academy

Department of Applied Ecology, Associate professor

D. B. Sereda, Zaporozhye State Engineering Academy

Department of Ferrous Metallurgy, 

Postgraduate student

References

Колесников М. И. Катализ и производство катализаторов : монография / М. И. Колесников. – Москва : Техника, 2004. – 400 с.

Kolesnikov M.I. Kataliz i proizvodstvo katalizatorov [Catalysis and catalysts production]. Moscow : Tekhnika Publ., 2004, 400 p. (in Russian).

Григорян Э. А. Катализаторы ХХI века / Э. А. Григорян, А. Г. Мержанов // Наука производству. – 1998. – № 3 (5). – С. 30–41.

Grigoryan E.A. and Merzhanov A.G. Katalizatory ХХI veka [The catalysts of the XXI century]. Nauka proizvodstvu [Science production]. 1998, no. 3 (5), pp. 30–41. (in Russian).

Токабе К. Катализаторы и каталитические процессы : монография / К. Токабе. – Москва : Техника, 1993. – 350 c.

Tokabe K. Katalizatory i kataliticheskie protsessy [Catalysts and catalytic processes]. Moscow : Tekhnika Publ., 1993, 350 p. (in Russian).

Попова Н. М. Катализаторы очистки газовых выбросов промышленных производств : монография / Н. М. Попова. – Москва : Химия, 1991. – 176 с.

Popova N.M. Katalizatory ochistki gazovykh vybrosov promyshlennykh proizvodstv [Catalysts gas emissions purification of industrial production]. Moscow : Chemistry Publ., 1991, 176 p. (in Russian).

Мержанов А. Г. Процессы горения и синтеза материалов : монография / А. Г. Мержанов. – Черноголовка : ИСМАН, 1998. – 512 с.

Merzhanov A.G. Protsessy goreniya i sinteza materialov [Combustion and synthesis of materials]. Chernogolovka : ISMAN Publ., 1998, 512 p. (in Russian).

Амосов А. П. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов / А. П. Амосов, И. П. Боровинская, А. Г. Мержанов. – Москва : Машиностроение-1, 2007. – 567 с.

Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology SHS materials]. Moscow : Mechanical Engineering-1 Publ., 2007, 567 p. (in Russian).

Левашов Е. А. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза : монография / [Е. А. Левашов, А. С. Рогачев, В. И. Юхвид, И. П. Боровинская]. – Москва: БИНОМ, 1999. – 176 с.

Levashov E.A., Rogachev A.S., Yukhvid V.I. and Borovinskay I.P. Fiziko-khimicheskie i tekhnologicheskie osnovy samorasprostranyayushchegosya vysoko temperaturnogo sinteza [Physico-chemical and technological bases of HTS]. Moscow : BINOM Publ., 1999. 176 p. (in Russian).

Середа Б. П. Нові матеріали в металургії [навч. посіб. для студ. вищ. навч. закл.] / Б. П. Середа. – Запоріжжя : ЗДІА, 2009. – 392 с.

Sereda B.P. Novі materіali v metalurgії [New materials in the industry]. Zaporіzhzhya : ZDІA Publ., 2009, 392 p. (in Ukrainian).

Середа Б. П. Влияние состава никель-алюминиевого сплава с добавками Co, Mn и Cu на структуру и удельную активность катализатора на их основе / Б. П. Середа, Г. Б. Кожемякин, В. Г. Рыжков [и др.] // Строительство, материаловедение, машиностроение. – 2009. – Вып. 48. – C. 101–104.

Sereda B.P., Kozhemyakin G.B., Ryzhkov V.G. [i dr.] Vliyanie sostava nikel'-alyuminievogo splava s dobavkami Co, Mn i Cu na strukturu i udel'nuyu aktivnost' katalizatora na ikh osnove. [Influence of the composition of nickel-aluminum alloy containing Co, Mn and Cu on the structure and the specific activity of the catalyst on the basis of their]. Stroitel'stvo, materialovedenie, mashinostroenie [Construction, Materials Science, Mechanical Engineering]. 2009, vol. 48, pp. 101–104. (in Russian).

Zeifert B., Blasquez J.S., Moreno J.G.C., Calderon H.A. Raney-nickel catalysts produced by mechanical alloying. Rev.Adv.Mater.Sci, 2008, no. 18, pp. 632–638.

Sereda B., Belokon’ Y., Zherebtsov A., Sereda D. The Researching and Modeling of Physical-Chemical Properties of Ni-base Alloys in SHS Conditions. Materials Science and Technology, Pittsburgh : MS&T, 2012, pp. 494–498.

Sereda B., Belokon’ Y., Zherebtsov A., Belokon’ K. The Retrieving of Heat-resistant Alloys on Intermetallic Base for Details of Gas Turbine Engine Hot Track in SHS Conditions. Materials Science and Technology, Houston : MS&T, 2010, pp. 2097–2102.

Аркатова Л. А. Углекислотная конверсия метана на алюминидах никеля / Л. А. Аркатова, Т. С. Харламова, Л. В. Галактионова [и др.] // Журнал физической химии. – 2006. – Т. 80. – № 8. – С. 1403–1406.

Arkatova L.A., Kharlamova T.S., Galaktionova L.V. [and al.] Uglekislotnaya konversiya metana na alyuminidakh nikelya [Carbon dioxide conversion of methane on nickel aluminide]. Zhurnal fizicheskoy khimii [Journal of Physical Chemistry]. 2006, vol. 80, no. 8, pp. 1403–1406. (in Russian).

Published

2015-12-19