Ways of compensationof incomplete formal axiomatics in identification ofcomplex objects

Authors

  • V. M. Volchuk Department of Materials Science and Material Processing, State Higher Education Institution“Prydniprovska State Academy of Civil Engineering and Architecture”, 24-a, Chernyshevskoho St., 49600, Dnipro, Ukraine https://orcid.org/0000-0001-7199-192X
  • Yu. I. Dubrov Department of Materials Science and Material Processing, State Higher Education Institution“Prydniprovska State Academy of Civil Engineering and Architecture”, 24-a, Chernyshevskoho St., 49600, Dnipro, Ukraine https://orcid.org/0000-0002-3213-4893

DOI:

https://doi.org/10.30838/J.PMHTM.2413.261218.31.562

Keywords:

incompleteness of formal axiomatic, complex object, fractal geometry, the principle “external additions”, cast iron,

Abstract

Abstract. Introduction.The discrepancies between the results of modeling and the data obtained after direct experiments on a real object indicate incompleteness of the formal axiomatics of the existing methods of research in various fields of science and technology. To assess the incompleteness of the formal axiomatics of the object, the theorem of K. Godel and the principle of “external  complementing  of  S.  Bir” are  used.  In  purpose  to  compensate  for  the  incompleteness  of  formal  axiomatics,  it  is proposed to perform modeling of the microstructure of an object with the use of a language of a higher level. Theoretical basis and results.As an example, the cast iron structure represented by the fractal model is considered. Comparison of the analysis results of the structure and mechanical properties of cast iron with the use of fractal and traditional methods with field testing data is carried out. The correlation coefficients between the topological characteristics of the structure of cast-iron rolls of the brand SPHN (percentage content of perlite and carbides) and mechanical properties are 0,53and 0,52, respectively. Between the fractal dimensions of perlite and carbides and the mechanical properties of these rolls, the coefficients of correlation make up 0,94 and 0,93, respectively. The obtained results indicate the prospects of using fractal geometry for the identification of complex objects in  comparison  with  the  Euclidean  geometry. Originality.  In  order  to  partially  eliminate  the  incompleteness  of  the  formal axiomatics that arises when identifying the structure and properties of complex objects, according to the principle of “external addition”S. Bier, it is shown that it is possible to apply a higher level language fractal geometry. Conclusion. An algorithm is proposed for partial compensation of the incompleteness of the formal axiomatics of the structure of complex objects using fractal modeling.  The  results  obtained  highlight  the  prospects  of  using  the  fractal  geometry  to  partially  compensate  for  the incompleteness of the formal axiomatics in the model under consideration.

Author Biographies

V. M. Volchuk, Department of Materials Science and Material Processing, State Higher Education Institution“Prydniprovska State Academy of Civil Engineering and Architecture”, 24-a, Chernyshevskoho St., 49600, Dnipro

Dr. Sc. (Tech.), As. Prof.

Yu. I. Dubrov, Department of Materials Science and Material Processing, State Higher Education Institution“Prydniprovska State Academy of Civil Engineering and Architecture”, 24-a, Chernyshevskoho St., 49600, Dnipro

Dr. Sc. (Tech.), Prof.

References

<p>1. Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik. 1931, vol. 38, no. 1, рр. 173-198. (in Germany)</p><p>2. Bir S. <em>Kibernetika</em><em> </em><em>i</em><em> </em><em>upravleniye</em><em> </em><em>proizvodstvom</em><em> </em>[Cybernetics and production management]. Moscow : Nauka, 1963, 276 p. <br /> (in Russian).</p><p>3. Bolshakov Vad.I., Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Chastkova kompensatsiya nepovnoty formal’noyi aksiomatyky pry identyfikatsiyi struktury metalu</em> [The partial compensation of incompleteness of formal axiomatics in the identification of the metal structure]. <em>Visnyk akademiyi nauk Ukrayiny</em> [Bulletin of the National Academy of Sciences of Ukraine]. 2014, no. 12, pp. 45−48. (in Ukrainian). – Available at: <span style="text-decoration: underline;"><a href="http://dspace.nbuv.gov.ua/handle/123456789/73434">http://dspace.nbuv.gov.ua/handle/123456789/73434</a></span></p><p>4. Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Materialovedcheskiye aspekty primeneniya chastichnoy kompensatsii nepolnoty formal'noy aksiomatiki </em>[Material aspects of use of partial compensation of incompleteness of formal axiomatics]. <em>Visnyk Prydniprovs’koyi derzhavnoyi akademiyi budivnytstva ta arkhitektury</em> [Bulletin of Prydniprovska State Academy of Civil Engineering and Architecture]. 2015, no. 5, pp. 10–16. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="http://visnyk.pgasa.dp.ua/article/view/47385/43497">http://visnyk.pgasa.dp.ua/article/view/47385/43497</a></span></p><p>5. Dubrov Yu., Bolshakov V. and Volchuk V. <em>Puti identifikatsii periodicheskikh mnogokriterial'nykh tekhnologiy </em>[Road periodic identification of multi-criteria Technology]<em>. </em>Saarbrucken : Palmarium Academic Publishing, 2015, 236 p. (in Russian).</p><p>6. Skoblo T.S., Vorontsov N.M., Budagyants N.A. and others. <em>Prokatnyye</em><em> </em><em>valki</em><em> </em><em>iz</em><em> </em><em>vysokouglerodistykh</em><em> </em><em>staley</em> [Rolling rolls made of high-carbon steels]. Moscow: Metallurgiya, 1994, 336 p. (in Russian).</p><p>7. Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Identifikatsiya</em><em> </em><em>mnogoparametricheskikh</em><em>, </em><em>mnogokriterial</em><em>'</em><em>nykh</em><em> </em><em>tekhnologiy</em><em> </em><em>i</em><em> </em><em>puti</em><em> </em><em>ikh</em><em> </em><em>prakticheskoy</em><em> </em><em>realizatsii</em> [Multiparameter identification, multicriteria techniques and ways of their implementation]. <em>Metaloznavstvo ta termichna obrobka metaliv</em> [Metall Science and Heat Treatment of Metals]. 201, no. 4. pp. 5−11. (in Russian).</p><p>8. Mandelbrot B.B. The Fractal Geometry of Nature : monograph. New-York, San Francisco: Freeman, 1982, 480 p. – Available at: <span style="text-decoration: underline;"><a href="http://www.amazon.com/Fractal-Geometry-Nature-Benoit-Mandelbrot/dp/0716711869">http://www.amazon.com/Fractal-Geometry-Nature-Benoit-Mandelbrot/dp/0716711869</a></span></p><p>9. Zhuravel I.M. and Svirs'ka L. M. Measurement of the mean grain size in a metal by using fractal dimensions. Materials Science. 2010, vol. 46, no. 3, pр. 418-420.</p><p>10. Volchuk V., Klymenko I., Kroviakov S. and Orešković M. Method of material quality estimation with usage of multifractal formalism. Tehnički glasnik - Technical Journal, 2018, vol. 12, no. 2, рр. 93−97. – Available at: <span style="text-decoration: underline;"><a href="https://doi.org/10.31803/tg-20180302115027">https://doi.org/10.31803/tg-20180302115027</a></span></p><p>11. Volchuk V.M. <em>K primeneniyu fraktal'nogo formalizma pri ranzhirovanii kriteriyev kachestva mnogoparametricheskikh tekhnologiy </em>[On the Application of Fractal Formalism for Ranging Criteria of Quality of Multiparametric Technologies]. <em>Metallofizika I noveyshiye tekhnologii </em>[Metal Physics and Advanced Technologies]. 2017, vol. 39, no 3, рp. 949−957. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="http://dspace.nbuv.gov.ua/handle/123456789/130334">http://dspace.nbuv.gov.ua/handle/123456789/130334</a></span></p><p>12. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Organizatsiya fraktal'nogo modelirovaniya </em>[Organization of fractal modeling]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy </em>[Reports of the National Academy of Sciences of Ukraine]. 2018, no. 6, pp. 67-72. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="https://doi.org/10.15407/dopovidi2018.06.067">https://doi.org/10.15407/dopovidi2018.06.067</a></span></p><p>13. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Topologicheskiye i fraktal'nyye invarianty struktury dlya otsenki kachestva metalla </em>[Topological and fractal invariants of a structure to assess the quality of a metal]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy </em>[Reports of the National Academy of Sciences of Ukraine]. 2017, no. 4, pp. 42−48. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="https://doi.org/10.15407/dopovidi2017.04.00">https://doi.org/10.15407/dopovidi2017.04.00</a></span></p><p>14. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Fraktal'nyy podkhod pri identifikatsii slozhnykh sistem </em>[Fractal approach to the identification of complex systems]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy </em>[Reports of the National Academy of Sciences of Ukraine]. 2017, no. 6, pp. 46−50. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="https://doi.org/10.15407/dopovidi2017.06.00">https://doi.org/10.15407/dopovidi2017.06.00</a></span></p><p>15. Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. <em>Osobennosti primeneniya mul'tifraktal'nogo formalizma v materialovedenii </em>[Features of the multifractal formalism in materials]. <em>Dopovidi Natsionalnoi akademii nauk Ukrainy</em> [Reports of the National Academy of Sciences of Ukraine]. 2008, no. 11, pp. 99-107. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="http://www.dopovidi.nas.gov.ua/2008-11/08-11-17.pdf">http://www.dopovidi.nas.gov.ua/2008-11/08-11-17.pdf</a></span></p><p>16. Bolshakov V.I. and Volchuk V.N. <em>Materialovedcheskiye</em><em> </em><em>aspekty</em><em> </em><em>primeneniya</em><em> </em><em>veyvletno</em><em>-</em><em>mul</em><em>'</em><em>tifraktal</em><em>'</em><em>nogo</em><em> </em><em>podkhoda</em><em> </em><em>dlya</em><em> </em><em>otsenki struktury i svoystv malouglerodistoy stali </em>[Material science aspects of the use of wavelet and multifractal approach for assessing of the structure and properties of low-carbon steel]. <em>Metallofizika i noveyshiye tekhnologii </em>[Metal Physics and Advanced Technologies]. 2011, vol. 33, no. 3, рp. 347−360. (in Russian).</p><p>17. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. Regularization of One Conditionally Ill-Posed Problem of Extractive Metallurgy. Metallofizika i Noveishie Tekhnologii, 2018, vol. 40, no. 9, pр. 1165-1171. – Available at: DOI: 10.15407/mfint.40.09.1165</p><p>18. Feder J. Fractals. New-York: Springer Science + Business Media, LLC, 1988, 305 p. </p><p>19. Bolshakov V.I., Volchuk V.M. and Dubrov Yu.I. <em>Osnovy</em><em> </em><em>organizacii</em><em> </em><em>fraktal</em><em>'</em><em>nogo</em><em> </em><em>modelirovaniya</em><em> </em>[Fundamentals of fractal modeling]. Kyiv : Ukraine : PH "Akademperiodyka", National Academy of Sciences of Ukraine, 2017, 170 p. (in Russian).</p><p>20. Volchuk V.N. <em>K voprosu o primenenii teorii mul'tifraktalov dlya otsenki mekhanicheskikh svoystv metalla </em>[On the application of the theory of multifractals for the evaluation of the mechanical properties of a metal]. <em>Metallovedenie i termicheskaya obrabotka metallov </em>[Metall Science and Heat Treatment of Metals]. 2014, no. 3, pp. 12–19. (in Russian). – Available at: <span style="text-decoration: underline;"><a href="/article/view/12-19">http://mtom.pgasa.dp.ua/article/view/12-19</a></span></p><p>21. Hausdorff G. Dimension und auberes Mab. Math. Ann. 1919. Vol. 79. рр. 157-179. – Available at: <span style="text-decoration: underline;"><a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002266989">http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002266989</a></span><span style="text-decoration: underline;">.</span> (in Germany).</p>

Downloads

Published

2018-12-26