By the definition of the metal class
Keywords:
metal, entropy, information dimension, quality criteria, forecastAbstract
Formulation of the problem. The complexity and diversity of structural metal components is not always possible to make its functional description, strictly define the metric in the space of states. Problems are solved only with the help of irreducible algorithms, naturally are called numerical irreducible. The hypothesis of numerical irreducibility problem of identification of qualitative characteristics of metals (eg, steel) can be formulated as follows: resolution function domain which is the set of raster images of the metal thin sections, and the range of values - a set of vectors describing its quality, it can only be built by applying the exhaustive search algorithm. It is clear that, considering the technical and organizational difficulties along the way, at this stage of scientific and technological progress should be at least temporarily abandon attempts to solve this problem by using "pure" analytical apparatus. Purpose. To partially eliminate of the formal axiomatic incompleteness arised with describing of the metal structure by conventional methods, we propose a method based on the use of the multifractal formalism of estimation uncertainty (entropy) of the structure. Results and discussion. Currently used for the evaluation of quality indicators structure multifractal formalism can more accurately assess the specific structure of supplies to a particular class of metal. According to the theory of multifractals the spectrum statistical dimensions of the structure is calculated according to the classical formula Renyi. The data analysis shows that from the spectrum of the calculated statistical graphite dimension the best sensitivity to the cast iron hardness has an information dimension. Trends of the graphite informational dimension and an information indicator HX proposed by Shannon are acceptable match. They have a more accurate convergence, exeeding the visual rating in 0.89 / 0.22 = 4.05 times. Conclusions. Thus, the article shows one of the ways to determine the metal belonging to a particular class by its quality criteria prediction with a multifractal analysis and a structure information entropy applying.
References
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Большаков В. И. Вычислительно неприводимые системы и пути их идентификации / В. И. Большаков, Ю. И. Дубров // Металознавство та термічна обробка металів. – Дніпропетровськ : ДВНЗ ПДАБА, 2014. - № 1. – С. 5–18.
Режим доступа : http://mtom.pgasa.dp.ua/article/ view/19-40/54572
Пути идентификации периодических многокритериальных технологий : монография [Ю. Дубров, В. Большаков, В. Волчук]. – Саарбрюккен, Германия : Академия Палмара, 2015. – 236 с.
Режим доступа : https://www.ljubljuknigi.ru/store/ru/ book/ Пути-идентификации-периодических-многокритериальных -технологий/isbn/978-3-659-60262-7
Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme / K. Gödel // I. Monatshefte für Mathematik und Physik, 1931, vol. 38, pp. 173-198.
Режим доступа : http://www.w-k-essler.de/pdfs/goedel. pdf
Большаков Вад. І. Про неповноту формальної аксіоматики в задачах ідентифікації структури металу / Вад. І. Большаков, В. І. Большаков, Ю. І. Дубров // Вісник НАН України. - 2014. - № 4. – С. 55–59.
Режим доступу : http://dspace.nbuv.gov.ua/handle/ 123456789/69367
Большаков Вад. І. Часткова компенсація неповноти формальної аксіоматики при ідентифікації структури металу / Вад. І. Большаков,
В. І. Большаков, В. М. Волчук [та ін.] // Вісник НАН України. - 2014. - № 12. – С. 45-48.
Режим доступу : http://dspace.nbuv.gov.ua/handle/ 123456789/73434
Большаков В. И. Пути решения задач идентификации качественных характеристик материалов на основе экспертных систем /
В. И. Большаков, Ю. И. Дубров, А. Н. Ткаченко [и др.] // Доповіді НАН України. – 2006. - № 4. – С. 97-102.
Режим доступа : http://www.dopovidi.nas.gov.ua/
Rényi A. Probability Theory / A. Rényi A // Amsterdam. The Netherlands : North-Holland, 1970, 670 р.
Режим доступа : http://www.abebooks.com/ PROBABILITY-THEORY-Renyi-A-North-Holland-Publishing/9932099825/bd
Shannon Claude E. A Mathematical Theory of Communication / Claude E. Shannon // Bell System Technical Journal, 1948, vol. 27 (3),
pp. 379–423.
Режим доступа : http://worrydream.com/refs/ Shannon%20-%20A%20 Mathematical%20Theory%20of% 20 Communication.pdf
Shannon, Claude E. A Mathematical Theory of Communication / Claude E. Shannon // Bell System Technical Journal, 1948, vol. 27 (4),
pp. 623–656.
Режим доступа: https://www.cs.ucf.edu/~dcm/ Teaching/COP5611-Spring2012/Shannon48-MathTheory Comm.pdf
Шеннон К. Работы по теории информации и кибернетике : монография / К. Шеннон. - Москва : Изд. иностр. лит., 1963. - 830 с.
Режим доступа : http://www.dissercat.com/content/ kombinatorno-informatsionnaya-otsenka-slozhnosti-pri-sinteze-diskretnykh-upravlyayushchikh-u
Большаков В. И. Особенности применения мультифрактального формализма в материаловедении / В. И. Большаков, В. Н. Волчук,
Ю. И. Дубров // Доповіді НАН України. - 2008. - № 11. - С. 99-107.
Режим доступа : http://www.dopovidi.nas.gov.ua/2008-11/
Фракталы в материаловедении : монография [В. И. Большаков,
В. Н. Волчук, Ю. И. Дубров]. - Днепропетровск : ПГАСА, 2006. – 253 с.
Режим доступа : http://anvsu.org.ua/index.files/ Biographies /Bolchakov.htm
Большаков В. И. Об оценке применимости языка фрактальной геометрии для описания качественных трансформаций материалов /
В. И. Большаков, Ю. И. Дубров // Доповіді НАН України. - № 4. - 2002. - С. 116-121.
Режим доступа : http://www.dopovidi.nas.gov.ua/
REFERENCES
Bolshakov V.I. and Dubrov Yu.I. Vychislitel'no neprivodimyye sistemy i puti ikh identifikatsii [Сomputationally irreducible systems and their identification]. Metaloznavstvo ta termіchna obrobka metalіv [Metallurgy and heat treatment of metals]. DVNZ PDABA [SHEE PSAEA]. Dnipropetrovsk, 2014, no. 1, pр. 5−18. (in Russian).
Dubrov Yu., Bolshakov V. and Volchuk V. Puti identifikatsii periodicheskikh mnogokriterial'nykh tekhnologiy : monografiya [Road periodic identification of multi-criteria technologies : monograph]. Saarbrücken, Palmarium Academic Publ., 2015, 236 p. (in Russian).
Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik. 1931, vol. 38, pp. 173-198.
Bol'shakov Vad.I., Bolshakov V.I. and Dubrov Yu.I. Pro nepovnotu formalnoyi aksiomatyky v zadachakh identyfikatsiyi struktury metalu [About incompleteness formal axiomatic in problems of identification of metal structure]. Vіsnik NAN Ukraїni. [Bulletin of the National Academy of Sciences of Ukraine]. 2014, no. 4, pp. 55−59. (in Ukrainian).
Bol'shakov Vad.I., Bolshakov V.I., Volchuk V.N. [and oth.]. Chastkova kompensatsiya nepovnoty formalʹnoyi aksiomatyky pry identyfikatsiyi struktury metalu [The partial compensation of incompleteness of formal axiomatics in the identification of the metal structure]. Vіsnik NAN Ukraїni [Bulletin of the National Academy of Sciences of Ukraine]. 2014, no. 12, pp. 45-48. (in Ukrainian).
Bolshakov V.I., Dubrov Yu.I., Tkachenko A.N. [and oth.]. Puti reshenia zadach identificatsii kachestvennyh charakteristik materialov na osnove ekspertnyh sistem [Ways of solving problems of identification of the qualitative characteristics of materials on the basis of expert systems]. Dopovіdі NAN Ukraїni [Reports National Academy of Sciences of Ukraine]. 2006, no. 4, pp. 97-102. (in Russian).
Rényi A. Probability Theory. Amsterdam. The Netherlands : North-Holland, 1970, 670 р.
Shannon, Claude E. A Mathematical Theory of Communication. Bell System Technical Journal. 1948, vol. 27 (3), pp. 379–423.
Shannon, Claude E. A Mathematical Theory of Communication. Bell System Technical Journal. 1948, vol. 27 (4), pp. 623–656.
Shennon K. Raboty po teorii informatsii i kibernetike [Works on information theory and cybernetics]. Moscow : Foreign Lit. Publ., 1963, 830 p. (in Russian).
Bolshakov V.I., Volchuk V.N. and Dubrov Yu.I. Osobennosti primeneniya mul'tifraktal'nogo formalizma v materialovedenii [Features of the multifractal formalism in materials]. Dopovіdі NAN Ukraїni [Reports of the National Academy of Sciences of Ukraine]. 2008, no. 11, pp. 99−107. (in Russian).
Bol'shakov V.I., Volchuk V.N. and Dubrov Yu.I. Fraktaly v materialovedenii : monografia [Fractals in materials : monograph]. Dnipropetrovsk : PSAEA Publ., 2006, 253 p. (in Russian).
Bol'shakov V.I. and Dubrov Yu.I. Ob otsenke primenimosti yazyka fraktal'noy geometrii dlya opisaniya kachestvennykh transformatsiy materialov [An estimate of the applicability of the language of fractal geometry to describe Ria-quality transformation of materials]. Dopovіdі NAN Ukraїni [Reports National Academy of Sciences of Ukraine]. 2002,
no. 4, pp. 116-121. (in Russian).
Downloads
Published
Issue
Section
License
Authors that are published in this journal agree to follow the conditions:
Authors reserve the right to the authorship of his work and cede the right to the journal of first publication of this work on conditions of the license under the Creative Commons Attribution License, which allows others to distribute it freely with the obligatory reference to the author of the original work and the first publication of the work in this journal.